Abstract
The efficiency of crossflow microfiltration processes is limited by membrane fouling and concentration polarization leading to permeate flux decline during operation. The experiments that were carried out in the laboratory were conducted to determine and investigate the performance, behaviour and the fouling susceptibility of new ceramic tubular microfiltration membranes during the crossflow filtration of yeast suspensions. The tubular membranes of nominal pore size 0.5 microns were fouled over a varied range of concentration, temperatures, pH, crossflow velocities and system pressures. The typical filtration conditions were at a temperature of 25°C, a system pressure of 1.5 bar and a concentration of 0.03 g/L yeast suspension. These parameters varied during subsequent investigations. After each experiment, the membrane and the rig were cleaned using a three stage cleaning process and was reused in order to replicate industrial filtration conditions. The effects of repeated fouling and cleaning cycles upon membrane flux over time and cleaning efficiency are investigated and their influence over time is also documented. For every experiment, the flux data was recorded over a 50 min period and the membrane was changed after the PWF declined considerably due to excessive fouling over time. Chemical cleaning consisted of a sequential application of a 1% caustic solution through the rig followed by a 2% hypochlorite solution and a 2% nitric solution, all at 50°C. The permeate flux was shown to decrease with filtration time during the development of the fouling layer. Once the fouling layer was developed and established, there appeared to be a leveling of permeate flux. The experimental results are presented in the report and the flux values at different conditions are presented.
Original language | English (US) |
---|---|
Pages (from-to) | 273-289 |
Number of pages | 17 |
Journal | Desalination |
Volume | 220 |
Issue number | 1-3 |
DOIs | |
State | Published - Mar 1 2008 |
Keywords
- Ceramic and yeast suspension
- Microfiltration
- Tubular membranes
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- General Materials Science
- Water Science and Technology
- Mechanical Engineering