The elastic field of a surface step: The Marchenko-Parshin formula in the linear case

Cameron R. Connell, Russel E. Caflisch, Erding Luo, Geoff Simms

Research output: Contribution to journalArticlepeer-review

Abstract

Strain has significance for both the growth characteristics and material properties of thin epitaxial films. In this work, the method of lattice statics is applied to an epitaxial system with cubic symmetry, using harmonic potentials. The energy density and force balance equations are written using a finite difference formalism that clearly shows their consistency with continuum elasticity. For simplicity, the atomic interactions are assumed to be maximally localized. For a layered material system with a material/vacuum interface and with surface steps, force balance equations are derived, and intrinsic surface stress at the material/vacuum interface is included by treating the atoms at the surface as having different elastic properties. By defining the strain relative to an appropriately chosen nonequilibrium lattice, as in the method of eigenstrains, analytic formulas in terms of microscopic parameters are found for the local force field near a step and for the macroscopic monopole and dipole moment forces due to a step. These results provide an atomistic validation of the Marchenko-Parshin formula for the dipole moment in terms of the elastic surface stress.

Original languageEnglish (US)
Pages (from-to)368-386
Number of pages19
JournalJournal of Computational and Applied Mathematics
Volume196
Issue number2
DOIs
StatePublished - Nov 15 2006

Keywords

  • Elasticity
  • Epitaxial growth
  • Marchenko-Parshin formula

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'The elastic field of a surface step: The Marchenko-Parshin formula in the linear case'. Together they form a unique fingerprint.

Cite this