TY - JOUR
T1 - The Gribov problem and QCD dynamics
AU - Vandersickel, N.
AU - Zwanziger, Daniel
N1 - Funding Information:
N. Vandersickel is supported by the Research-Foundation Flanders (FWO Vlaanderen) . We wish to thank Attilio Cucchieri, David Dudal, Orlando Oliveira and Silvio P. Sorella for comments and improvements of this manuscript. Laurent Baulieu, Jutho Haegeman and Axel Maas are acknowledged for useful discussions.
PY - 2012/11
Y1 - 2012/11
N2 - In 1967, Faddeev and Popov were able to quantize the Yang-Mills theory by introducing new particles called ghost through the introduction of a gauge. Ever since, this quantization has become a standard textbook item. Some years later, Gribov discovered that the gauge fixing was not complete, gauge copies called Gribov copies were still present and could affect the infrared region of quantities like the gauge dependent gluon and ghost propagator. This feature was often in the literature related to confinement. Some years later, the semi-classical approach of Gribov was generalized to all orders and the GZ action was born. Ever since, many related articles were published. This review tends to give a pedagogic review of the ideas of Gribov and the subsequent construction of the GZ action, including many other topics related to the Gribov region. It is shown how the GZ action can be viewed as a non-perturbative tool which has relations with other approaches toward confinement. Many different features related to the GZ action shall be discussed in detail, such as BRST breaking, the KO criterion, the propagators, etc. We shall also compare with the lattice data and other non-perturbative approaches, including stochastic quantization.
AB - In 1967, Faddeev and Popov were able to quantize the Yang-Mills theory by introducing new particles called ghost through the introduction of a gauge. Ever since, this quantization has become a standard textbook item. Some years later, Gribov discovered that the gauge fixing was not complete, gauge copies called Gribov copies were still present and could affect the infrared region of quantities like the gauge dependent gluon and ghost propagator. This feature was often in the literature related to confinement. Some years later, the semi-classical approach of Gribov was generalized to all orders and the GZ action was born. Ever since, many related articles were published. This review tends to give a pedagogic review of the ideas of Gribov and the subsequent construction of the GZ action, including many other topics related to the Gribov region. It is shown how the GZ action can be viewed as a non-perturbative tool which has relations with other approaches toward confinement. Many different features related to the GZ action shall be discussed in detail, such as BRST breaking, the KO criterion, the propagators, etc. We shall also compare with the lattice data and other non-perturbative approaches, including stochastic quantization.
UR - http://www.scopus.com/inward/record.url?scp=84868694396&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868694396&partnerID=8YFLogxK
U2 - 10.1016/j.physrep.2012.07.003
DO - 10.1016/j.physrep.2012.07.003
M3 - Review article
AN - SCOPUS:84868694396
SN - 0370-1573
VL - 520
SP - 175
EP - 251
JO - Physics Reports
JF - Physics Reports
IS - 4
ER -