Abstract
We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n 1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c 2 > c 1 > 1, coloring a k-uniform c 1-colorable hypergraph with c 2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness result for approximately-coloring a 3-uniform hypergraph that is colorable with a constant number of colors. For k ≥ 4 such a result has been shown by [14], who also discussed the inherent difference between the k = 3 case and k ≥ 4. Our proof presents a new connection between the Long-Code and the Kneser graph, and relies on the high chromatic numbers of the Kneser graph [19,22] and the Schrijver graph [26]. We prove a certain maximization variant of the Kneser conjecture, namely that any coloring of the Kneser graph by fewer colors than its chromatic number, has 'many' non-monochromatic edges.
Original language | English (US) |
---|---|
Pages (from-to) | 519-535 |
Number of pages | 17 |
Journal | Combinatorica |
Volume | 25 |
Issue number | 5 |
DOIs | |
State | Published - Sep 2005 |
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics
- Computational Mathematics