The Impact of Multi-Connectivity and Handover Constraints on Millimeter Wave and Terahertz Cellular Networks

Mustafa F. Ozkoc, Athanasios Koutsaftis, Rajeev Kumar, Pei Liu, Shivendra S. Panwar

Research output: Contribution to journalArticlepeer-review

Abstract

Wireless communication over terahertz (THz) frequency bands is envisioned as the key enabler of many applications and services offered in 6G networks. The abundantly available bandwidth in THz frequencies can satisfy the ultra-high user throughput requirements and accommodate a massive number of connected devices. However, poor propagation characteristics, shadowing, and blockages may result in sudden outages and necessitate frequent handovers. Therefore, an inefficient handover procedure will impose severe challenges in meeting the ultra-high reliability and low latency requirements of emerging applications. In blockage driven mmWave and THz networks, a higher multi-connectivity degree and efficient handover procedures are needed to reduce the data plane interruptions and to achieve high reliability. We present an analytical model to study the impact of handover procedures and multi-connectivity degree on the latency and reliability of blockage driven wireless networks. From the network protocol design perspective, our study offers a quick and accurate way to envisage how network architecture and protocols should evolve in terms of multi-connectivity degrees and handover procedural efficiency. Our results suggest that, for THz systems, coverage range should be increased even if it comes at the cost of increased initial access and base station discovery times.

Original languageEnglish (US)
JournalIEEE Journal on Selected Areas in Communications
DOIs
StateAccepted/In press - 2021

Keywords

  • 5G mobile communication
  • Blockages
  • Cellular networks
  • Handover
  • Handover
  • Low latency
  • Millimeter Wave
  • mmWave
  • Multi-connectivity
  • Protocols
  • Quality of service
  • Quality of service
  • Reliability
  • Reliability
  • TeraHertz
  • Throughput
  • THz
  • URLLC

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'The Impact of Multi-Connectivity and Handover Constraints on Millimeter Wave and Terahertz Cellular Networks'. Together they form a unique fingerprint.

Cite this