The LRS and SIN domains: Two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing

Christopher J. Fry, Anne Norris, Michael Cosgrove, Jef D. Boeke, Craig L. Peterson

Research output: Contribution to journalArticlepeer-review

Abstract

Genetic experiments have identified two structurally similar nucleosomal domains, SIN and LRS, required for transcriptional repression at genes regulated by the SWI/SNF chromatin remodeling complex or for heterochromatic gene silencing, respectively. Each of these domains consists of historic H3 and H4 L1 and L2 loops that form a DNA-binding surface at either superhelical location (SHL) ±2.5 (LRS) or SHL ±0.5 (SIN). Here we show that alterations in the LRS domain do not result in Sin- phototypes, nor does disruption of the SIN domain lead to loss of ribosomal DNA heterochromatic gene silencing (Lrs- phenoiype). Furthermore, whereas disruption of the SIN domain eliminates intramolecular folding of nucleosomal arrays in vitro, alterations in the LRS domain have no effect on chromatin folding in vitro. In contrast to these dissimilarities, we find that the SIN and LRS domains are both required for recruitment of Sir2p and Sir4p to telomeric and silent mating type loci, suggesting that both surfaces can contribute to heterochromatin formation. Our study shows that structurally similar nucleosomal surfaces provide distinct functionalities in vivo and in vitro.

Original languageEnglish (US)
Pages (from-to)9045-9059
Number of pages15
JournalMolecular and cellular biology
Volume26
Issue number23
DOIs
StatePublished - Dec 2006

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The LRS and SIN domains: Two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing'. Together they form a unique fingerprint.

Cite this