Abstract
We analyze the Kozachenko-Leonenko (KL) fixed k-nearest neighbor estimator for the differential entropy. We obtain the first uniform upper bound on its performance for any fixed k over Hölder balls on a torus without assuming any conditions on how close the density could be from zero. Accompanying a recent minimax lower bound over the Hölder ball, we show that the KL estimator for any fixed k is achieving the minimax rates up to logarithmic factors without cognizance of the smoothness parameter s of the Hölder ball for s ∈ (0, 2] and arbitrary dimension d, rendering it the first estimator that provably satisfies this property.
Original language | English (US) |
---|---|
Pages (from-to) | 3156-3167 |
Number of pages | 12 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing