### Abstract

We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M ≳ 1 M⊙). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, α, are unbiased and that the uncertainty, Δα, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on α, and provide an analytic approximation for Δα as a function of the observed number of stars and mass range. Comparison with literature studies shows that ∼3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield 〈α〉 = 2.46, with a 1σ dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF slope recovery in this paper are lower limits, as we do not explicitly consider all possible sources of uncertainty, including dynamical effects (e.g., mass segregation), unresolved binaries, and non-coeval populations. We briefly discuss how each of these effects can be incorporated into extensions of the present framework. Finally, we emphasize that the technique and lessons learned are applicable to more general problems involving power-law fitting.

Original language | English (US) |
---|---|

Article number | 123 |

Journal | Astrophysical Journal |

Volume | 762 |

Issue number | 2 |

DOIs | |

State | Published - Jan 10 2013 |

### Keywords

- galaxies: star clusters: general
- methods: statistical
- stars: luminosity function, mass function

### ASJC Scopus subject areas

- Astronomy and Astrophysics
- Space and Planetary Science

## Fingerprint Dive into the research topics of 'The panchromatic hubble andromeda treasury. IV. A probabilistic approach to inferring the high-mass stellar initial mass function and other power-law functions'. Together they form a unique fingerprint.

## Cite this

*Astrophysical Journal*,

*762*(2), [123]. https://doi.org/10.1088/0004-637X/762/2/123