The Paradox of Time in Dynamic Causal Systems

Zachary J. Davis, Neil Bramley, Bob Rehder

Research output: Contribution to conferencePaperpeer-review

Abstract

Recent work has shown that people use temporal information including order, delay, and variability to infer causality between events. In this study we build on this work by investigating the role of time in dynamic systems, where causes take continuous values and also continually influence their effects. Recent studies of learning in these systems explored short interactions in a setting with comparatively rapidly evolving dynamics and modeled people as relying on simpler, resource-limited strategies to grapple with the stream of information (Davis et al., 2020). A natural question that arises from such an account is whether interacting with systems that unfold more slowly might reduce the systematic errors that result from these strategies. Paradoxically, we find that slowing the task indeed reduced the frequency of one type of error, but increased the error rate overall. To capture the differences between conditions, we introduce a novel Causal Event Segmentation model based on the notion that people compress the continuous scenes into events and use these to drive structure inference.

Original languageEnglish (US)
Pages808-814
Number of pages7
StatePublished - 2020
Event42nd Annual Meeting of the Cognitive Science Society: Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020 - Virtual, Online
Duration: Jul 29 2020Aug 1 2020

Conference

Conference42nd Annual Meeting of the Cognitive Science Society: Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020
CityVirtual, Online
Period7/29/208/1/20

Keywords

  • causal learning
  • continuous
  • event cognition
  • interventions
  • time

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'The Paradox of Time in Dynamic Causal Systems'. Together they form a unique fingerprint.

Cite this