TY - JOUR
T1 - The radio/x-ray domain of black hole X-ray binaries at the lowest radio luminosities
AU - Gallo, E.
AU - Miller-Jones, J. C.A.
AU - Russell, D. M.
AU - Jonker, P. G.
AU - Homan, J.
AU - Plotkin, R. M.
AU - Markoff, S.
AU - Miller, B. P.
AU - Corbel, S.
AU - Fender, R. P.
N1 - Publisher Copyright:
© 2014 The Authors.
PY - 2014/10/8
Y1 - 2014/10/8
N2 - We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 h at 5.3 GHz, yielding a 4.8 ± 1.4 μJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4 and 8 × 1025 erg s-1, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2 × 10-14 erg s-1 cm-2 (1-10 keV), corresponding to an Eddington ratio of ~4 × 10-9 for a 7.5 M black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ℓr = α+βℓX (where ℓ denotes logarithmic luminosities), with β = 0.72 ± 0.09. XTE J1118+480 is thus the third system - together with GX339-4 and V404 Cyg - for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ℓ X. Confirming previous results, we find no evidence for a dependence of the correlation normalization of an individual system on orbital parameters, relativistic boosting, reported black hole spin and/or black hole mass.We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard-state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors ≳ 0.3 dex in both lr and lX, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope β = 0.61 ± 0.03 and intrinsic scatter σ0 = 0.31 ± 0.03 dex.
AB - We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 h at 5.3 GHz, yielding a 4.8 ± 1.4 μJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4 and 8 × 1025 erg s-1, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2 × 10-14 erg s-1 cm-2 (1-10 keV), corresponding to an Eddington ratio of ~4 × 10-9 for a 7.5 M black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ℓr = α+βℓX (where ℓ denotes logarithmic luminosities), with β = 0.72 ± 0.09. XTE J1118+480 is thus the third system - together with GX339-4 and V404 Cyg - for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ℓ X. Confirming previous results, we find no evidence for a dependence of the correlation normalization of an individual system on orbital parameters, relativistic boosting, reported black hole spin and/or black hole mass.We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard-state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors ≳ 0.3 dex in both lr and lX, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope β = 0.61 ± 0.03 and intrinsic scatter σ0 = 0.31 ± 0.03 dex.
KW - Accretion
KW - Accretion discs
KW - Black hole physics -methods: statistical
KW - ISM: jets and outflows
KW - Radio continuum: general
KW - X-rays: binaries
UR - http://www.scopus.com/inward/record.url?scp=84913611413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84913611413&partnerID=8YFLogxK
U2 - 10.1093/mnras/stu1599
DO - 10.1093/mnras/stu1599
M3 - Article
AN - SCOPUS:84913611413
SN - 0035-8711
VL - 445
SP - 290
EP - 300
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -