The role of oscillatory phase in determining the temporal organization of perception: Evidence from sensory entrainment

Luca Ronconi, David Melcher

Research output: Contribution to journalArticlepeer-review


Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural oscillations in the theta/alpha band (∼4-12 Hz) as possible mechanisms underlying temporal windows in perception. Here, we combined two innovative methodologies to provide more direct support for this evidence. We used sensory entrainment to align neural oscillations to different frequencies and then characterized the resultant perceptual oscillation with a temporal dense sampling of the integration/segregation performance. Our results provide the first evidence that the frequency of temporal segregation can be modified by sensory entrainment, supporting a critical role of ongoing oscillations in the integration/segregation of information over time.

Original languageEnglish (US)
Pages (from-to)10636-10644
Number of pages9
JournalJournal of Neuroscience
Issue number44
StatePublished - Nov 1 2017


  • Behavioral oscillations
  • Oscillations
  • Temporal perception
  • Time perception
  • Visual perception
  • Visual Perception/physiology
  • Auditory Perception/physiology
  • Electroencephalography/methods
  • Humans
  • Time Perception/physiology
  • Periodicity
  • Acoustic Stimulation/methods
  • Male
  • Random Allocation
  • Young Adult
  • Visual Cortex/physiology
  • Photic Stimulation/methods
  • Adult
  • Female
  • Alpha Rhythm/physiology

ASJC Scopus subject areas

  • General Neuroscience


Dive into the research topics of 'The role of oscillatory phase in determining the temporal organization of perception: Evidence from sensory entrainment'. Together they form a unique fingerprint.

Cite this