TY - JOUR
T1 - The sea squirt Ciona intestinalis
AU - Christiaen, Lionel
AU - Wagner, Eileen
AU - Shi, Weiyang
AU - Levine, Michael
PY - 2009
Y1 - 2009
N2 - Sea squirts (Ciona intestinalis) are tunicates (or urochordates), the closest living relatives of the vertebrates. Although the adults are simple, sessile filter feeders, the embryos and larvae possess clear chordate features including a prominent notochord and dorsal, hollow neural tube. Tail-bud-stage embryos and mature swimming tadpoles are composed of approximately 1000 and 2600 cells, respectively, with complete lineage information. This cellular simplicity is coupled with a streamlined genome that has not undergone the duplications seen in vertebrates. A variety of molecular tools have been applied to understanding Ciona embryogenesis. Comparisons of the C. intestinalis genome and the related but divergent Ciona savignyi genome have facilitated the identification of conserved non-coding DNAs, including regulatory DNAs such as tissue-specific enhancers. Systematic in situ hybridization assays and gene-disruption experiments using specific morpholino antisense oligonucleotides have led to the elaboration of provisional gene regulatory networks underlying the specification of key chordate tissues, including the notochord, neural tube, and beating heart. These networks provide a foundation for understanding the mechanistic basis of more complex cell-specification processes in vertebrates, and for understanding the evolutionary origins of distinctive vertebrate characteristics such as the neural crest. Because tunicates and vertebrates are sister groups, there is every indication that the developmental mechanisms revealed in the simple Ciona model will be applicable to comparable processes in vertebrates.
AB - Sea squirts (Ciona intestinalis) are tunicates (or urochordates), the closest living relatives of the vertebrates. Although the adults are simple, sessile filter feeders, the embryos and larvae possess clear chordate features including a prominent notochord and dorsal, hollow neural tube. Tail-bud-stage embryos and mature swimming tadpoles are composed of approximately 1000 and 2600 cells, respectively, with complete lineage information. This cellular simplicity is coupled with a streamlined genome that has not undergone the duplications seen in vertebrates. A variety of molecular tools have been applied to understanding Ciona embryogenesis. Comparisons of the C. intestinalis genome and the related but divergent Ciona savignyi genome have facilitated the identification of conserved non-coding DNAs, including regulatory DNAs such as tissue-specific enhancers. Systematic in situ hybridization assays and gene-disruption experiments using specific morpholino antisense oligonucleotides have led to the elaboration of provisional gene regulatory networks underlying the specification of key chordate tissues, including the notochord, neural tube, and beating heart. These networks provide a foundation for understanding the mechanistic basis of more complex cell-specification processes in vertebrates, and for understanding the evolutionary origins of distinctive vertebrate characteristics such as the neural crest. Because tunicates and vertebrates are sister groups, there is every indication that the developmental mechanisms revealed in the simple Ciona model will be applicable to comparable processes in vertebrates.
UR - http://www.scopus.com/inward/record.url?scp=72149103803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72149103803&partnerID=8YFLogxK
U2 - 10.1101/pdb.emo138
DO - 10.1101/pdb.emo138
M3 - Article
C2 - 20150076
AN - SCOPUS:72149103803
SN - 1940-3402
VL - 4
JO - Cold Spring Harbor Protocols
JF - Cold Spring Harbor Protocols
IS - 12
ER -