TY - JOUR
T1 - The Shortest Route is Not Always the Fastest
T2 - Probability-Modeled Stereoscopic Eye Movement Completion Time in VR
AU - Duinkharjav, Budmonde
AU - Liang, Benjamin
AU - Patney, Anjul
AU - Brown, Rachel
AU - Sun, Qi
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/12/4
Y1 - 2023/12/4
N2 - Speed and consistency of target-shifting play a crucial role in human ability to perform complex tasks. Shifting our gaze between objects of interest quickly and consistently requires changes both in depth and direction. Gaze changes in depth are driven by slow, inconsistent vergence movements which rotate the eyes in opposite directions, while changes in direction are driven by ballistic, consistent movements called saccades, which rotate the eyes in the same direction. In the natural world, most of our eye movements are a combination of both types. While scientific consensus on the nature of saccades exists, vergence and combined movements remain less understood and agreed upon. We eschew the lack of scientific consensus in favor of proposing an operationalized computational model which predicts the completion time of any type of gaze movement during target-shifting in 3D. To this end, we conduct a psychophysical study in a stereo VR environment to collect more than 12,000 gaze movement trials, analyze the temporal distribution of the observed gaze movements, and fit a probabilistic model to the data. We perform a series of objective measurements and user studies to validate the model. The results demonstrate its predictive accuracy, generalization, as well as applications for optimizing visual performance by altering content placement. Lastly, we leverage the model to measure differences in human target-changing time relative to the natural world, as well as suggest scene-aware projection depth. By incorporating the complexities and randomness of human oculomotor control, we hope this research will support new behavior-aware metrics for VR/AR display design, interface layout, and gaze-contingent rendering.
AB - Speed and consistency of target-shifting play a crucial role in human ability to perform complex tasks. Shifting our gaze between objects of interest quickly and consistently requires changes both in depth and direction. Gaze changes in depth are driven by slow, inconsistent vergence movements which rotate the eyes in opposite directions, while changes in direction are driven by ballistic, consistent movements called saccades, which rotate the eyes in the same direction. In the natural world, most of our eye movements are a combination of both types. While scientific consensus on the nature of saccades exists, vergence and combined movements remain less understood and agreed upon. We eschew the lack of scientific consensus in favor of proposing an operationalized computational model which predicts the completion time of any type of gaze movement during target-shifting in 3D. To this end, we conduct a psychophysical study in a stereo VR environment to collect more than 12,000 gaze movement trials, analyze the temporal distribution of the observed gaze movements, and fit a probabilistic model to the data. We perform a series of objective measurements and user studies to validate the model. The results demonstrate its predictive accuracy, generalization, as well as applications for optimizing visual performance by altering content placement. Lastly, we leverage the model to measure differences in human target-changing time relative to the natural world, as well as suggest scene-aware projection depth. By incorporating the complexities and randomness of human oculomotor control, we hope this research will support new behavior-aware metrics for VR/AR display design, interface layout, and gaze-contingent rendering.
KW - eye movement
KW - visual performance
UR - http://www.scopus.com/inward/record.url?scp=85179626477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179626477&partnerID=8YFLogxK
U2 - 10.1145/3618334
DO - 10.1145/3618334
M3 - Article
AN - SCOPUS:85179626477
SN - 0730-0301
VL - 42
JO - ACM Transactions on Graphics
JF - ACM Transactions on Graphics
IS - 6
M1 - 220
ER -