Abstract
Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
Original language | English (US) |
---|---|
Article number | A3 |
Journal | Astronomy and Astrophysics |
Volume | 642 |
DOIs | |
State | Published - Oct 1 2020 |
Keywords
- Methods: observational
- Space vehicles: instruments
- Sun: general
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint Dive into the research topics of 'The Solar Orbiter Science Activity Plan: Translating solar and heliospheric physics questions into action'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action. / Zouganelis, I.; De Groof, A.; Walsh, A. P.; Williams, D. R.; Müller, D.; St Cyr, O. C.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T. S.; Howard, R. A.; Krucker, S.; Maksimovic, M.; Owen, C. J.; Rodríguez-Pacheco, J.; Romoli, M.; Solanki, S. K.; Watson, C.; Sanchez, L.; Lefort, J.; Osuna, P.; Gilbert, H. R.; Nieves-Chinchilla, T.; Abbo, L.; Alexandrova, O.; Anastasiadis, A.; Andretta, V.; Antonucci, E.; Appourchaux, T.; Aran, A.; Arge, C. N.; Aulanier, G.; Baker, D.; Bale, S. D.; Battaglia, M.; Bellot Rubio, L.; Bemporad, A.; Berthomier, M.; Bocchialini, K.; Bonnin, X.; Brun, A. S.; Bruno, R.; Buchlin, E.; Büchner, J.; Bucik, R.; Carcaboso, F.; Carr, R.; Carrasco-Blázquez, I.; Cecconi, B.; Cernuda Cangas, I.; Chen, C. H.K.; Chitta, L. P.; Chust, T.; Dalmasse, K.; D'Amicis, R.; Da Deppo, V.; De Marco, R.; Dolei, S.; Dolla, L.; Dudok De Wit, T.; Van Driel-Gesztelyi, L.; Eastwood, J. P.; Espinosa Lara, F.; Etesi, L.; Fedorov, A.; Félix-Redondo, F.; Fineschi, S.; Fleck, B.; Fontaine, D.; Fox, N. J.; Gandorfer, A.; Génot, V.; Georgoulis, M. K.; Gissot, S.; Giunta, A.; Gizon, L.; Gómez-Herrero, R.; Gontikakis, C.; Graham, G.; Green, L.; Grundy, T.; Haberreiter, M.; Harra, L. K.; Hassler, D. M.; Hirzberger, J.; Ho, G. C.; Hurford, G.; Innes, D.; Issautier, K.; James, A. W.; Janitzek, N.; Janvier, M.; Jeffrey, N.; Jenkins, J.; Khotyaintsev, Y.; Klein, K. L.; Kontar, E. P.; Kontogiannis, I.; Krafft, C.; Krasnoselskikh, V.; Kretzschmar, M.; Labrosse, N.; Lagg, A.; Landini, F.; Lavraud, B.; Leon, I.; Lepri, S. T.; Lewis, G. R.; Liewer, P.; Linker, J.; Livi, S.; Long, D. M.; Louarn, P.; Malandraki, O.; Maloney, S.; Martinez-Pillet, V.; Martinovic, M.; Masson, A.; Matthews, S.; Matteini, L.; Meyer-Vernet, N.; Moraitis, K.; Morton, R. J.; Musset, S.; Nicolaou, G.; Nindos, A.; O'Brien, H.; Orozco Suarez, D.; Owens, M.; Pancrazzi, M.; Papaioannou, A.; Parenti, S.; Pariat, E.; Patsourakos, S.; Perrone, D.; Peter, H.; Pinto, R. F.; Plainaki, C.; Plettemeier, D.; Plunkett, S. P.; Raines, J. M.; Raouafi, N.; Reid, H.; Retino, A.; Rezeau, L.; Rochus, P.; Rodriguez, L.; Rodriguez-Garcia, L.; Roth, M.; Rouillard, A. P.; Sahraoui, F.; Sasso, C.; Schou, J.; Schühle, U.; Sorriso-Valvo, L.; Soucek, J.; Spadaro, D.; Stangalini, M.; Stansby, D.; Steller, M.; Strugarek, A.; Štverák; Susino, R.; Telloni, D.; Terasa, C.; Teriaca, L.; Toledo-Redondo, S.; Del Toro Iniesta, J. C.; Tsiropoula, G.; Tsounis, A.; Tziotziou, K.; Valentini, F.; Vaivads, A.; Vecchio, A.; Velli, M.; Verbeeck, C.; Verdini, A.; Verscharen, D.; Vilmer, N.; Vourlidas, A.; Wicks, R.; Wimmer-Schweingruber, R. F.; Wiegelmann, T.; Young, P. R.; Zhukov, A. N.
In: Astronomy and Astrophysics, Vol. 642, A3, 01.10.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Solar Orbiter Science Activity Plan
T2 - Translating solar and heliospheric physics questions into action
AU - Zouganelis, I.
AU - De Groof, A.
AU - Walsh, A. P.
AU - Williams, D. R.
AU - Müller, D.
AU - St Cyr, O. C.
AU - Auchère, F.
AU - Berghmans, D.
AU - Fludra, A.
AU - Horbury, T. S.
AU - Howard, R. A.
AU - Krucker, S.
AU - Maksimovic, M.
AU - Owen, C. J.
AU - Rodríguez-Pacheco, J.
AU - Romoli, M.
AU - Solanki, S. K.
AU - Watson, C.
AU - Sanchez, L.
AU - Lefort, J.
AU - Osuna, P.
AU - Gilbert, H. R.
AU - Nieves-Chinchilla, T.
AU - Abbo, L.
AU - Alexandrova, O.
AU - Anastasiadis, A.
AU - Andretta, V.
AU - Antonucci, E.
AU - Appourchaux, T.
AU - Aran, A.
AU - Arge, C. N.
AU - Aulanier, G.
AU - Baker, D.
AU - Bale, S. D.
AU - Battaglia, M.
AU - Bellot Rubio, L.
AU - Bemporad, A.
AU - Berthomier, M.
AU - Bocchialini, K.
AU - Bonnin, X.
AU - Brun, A. S.
AU - Bruno, R.
AU - Buchlin, E.
AU - Büchner, J.
AU - Bucik, R.
AU - Carcaboso, F.
AU - Carr, R.
AU - Carrasco-Blázquez, I.
AU - Cecconi, B.
AU - Cernuda Cangas, I.
AU - Chen, C. H.K.
AU - Chitta, L. P.
AU - Chust, T.
AU - Dalmasse, K.
AU - D'Amicis, R.
AU - Da Deppo, V.
AU - De Marco, R.
AU - Dolei, S.
AU - Dolla, L.
AU - Dudok De Wit, T.
AU - Van Driel-Gesztelyi, L.
AU - Eastwood, J. P.
AU - Espinosa Lara, F.
AU - Etesi, L.
AU - Fedorov, A.
AU - Félix-Redondo, F.
AU - Fineschi, S.
AU - Fleck, B.
AU - Fontaine, D.
AU - Fox, N. J.
AU - Gandorfer, A.
AU - Génot, V.
AU - Georgoulis, M. K.
AU - Gissot, S.
AU - Giunta, A.
AU - Gizon, L.
AU - Gómez-Herrero, R.
AU - Gontikakis, C.
AU - Graham, G.
AU - Green, L.
AU - Grundy, T.
AU - Haberreiter, M.
AU - Harra, L. K.
AU - Hassler, D. M.
AU - Hirzberger, J.
AU - Ho, G. C.
AU - Hurford, G.
AU - Innes, D.
AU - Issautier, K.
AU - James, A. W.
AU - Janitzek, N.
AU - Janvier, M.
AU - Jeffrey, N.
AU - Jenkins, J.
AU - Khotyaintsev, Y.
AU - Klein, K. L.
AU - Kontar, E. P.
AU - Kontogiannis, I.
AU - Krafft, C.
AU - Krasnoselskikh, V.
AU - Kretzschmar, M.
AU - Labrosse, N.
AU - Lagg, A.
AU - Landini, F.
AU - Lavraud, B.
AU - Leon, I.
AU - Lepri, S. T.
AU - Lewis, G. R.
AU - Liewer, P.
AU - Linker, J.
AU - Livi, S.
AU - Long, D. M.
AU - Louarn, P.
AU - Malandraki, O.
AU - Maloney, S.
AU - Martinez-Pillet, V.
AU - Martinovic, M.
AU - Masson, A.
AU - Matthews, S.
AU - Matteini, L.
AU - Meyer-Vernet, N.
AU - Moraitis, K.
AU - Morton, R. J.
AU - Musset, S.
AU - Nicolaou, G.
AU - Nindos, A.
AU - O'Brien, H.
AU - Orozco Suarez, D.
AU - Owens, M.
AU - Pancrazzi, M.
AU - Papaioannou, A.
AU - Parenti, S.
AU - Pariat, E.
AU - Patsourakos, S.
AU - Perrone, D.
AU - Peter, H.
AU - Pinto, R. F.
AU - Plainaki, C.
AU - Plettemeier, D.
AU - Plunkett, S. P.
AU - Raines, J. M.
AU - Raouafi, N.
AU - Reid, H.
AU - Retino, A.
AU - Rezeau, L.
AU - Rochus, P.
AU - Rodriguez, L.
AU - Rodriguez-Garcia, L.
AU - Roth, M.
AU - Rouillard, A. P.
AU - Sahraoui, F.
AU - Sasso, C.
AU - Schou, J.
AU - Schühle, U.
AU - Sorriso-Valvo, L.
AU - Soucek, J.
AU - Spadaro, D.
AU - Stangalini, M.
AU - Stansby, D.
AU - Steller, M.
AU - Strugarek, A.
AU - Štverák,
AU - Susino, R.
AU - Telloni, D.
AU - Terasa, C.
AU - Teriaca, L.
AU - Toledo-Redondo, S.
AU - Del Toro Iniesta, J. C.
AU - Tsiropoula, G.
AU - Tsounis, A.
AU - Tziotziou, K.
AU - Valentini, F.
AU - Vaivads, A.
AU - Vecchio, A.
AU - Velli, M.
AU - Verbeeck, C.
AU - Verdini, A.
AU - Verscharen, D.
AU - Vilmer, N.
AU - Vourlidas, A.
AU - Wicks, R.
AU - Wimmer-Schweingruber, R. F.
AU - Wiegelmann, T.
AU - Young, P. R.
AU - Zhukov, A. N.
N1 - Funding Information: Acknowledgements. Solar Orbiter is a space mission of international collaboration between ESA and NASA with contributions from national agencies of ESA member states. The spacecraft has been developed by Airbus and is being operated by ESA from the European Space Operations Centre (ESOC) in Darmstadt, Germany. Science operations are carried out at ESA’s European Space Astronomy Centre (ESAC) in Villafranca del Castillo, Spain. SWA is an international collaboration which has been funded by the UKSA, CNES, ASI, NASA and the Czech contribution to the ESA PRODEX programme. UAH authors want to thanks the Spanish MINECO-FPI-2016 predoctoral grant with FSE, and its project FEDER/MCIU-AEEI/Proyecto ESP2017-88436-R. The Spanish contribution to SO/PHI has been funded by the Spanish Ministry of Science and Innovation through several projects, the last one being RTI2018-096886-B-C5, and by “Centro de Excelencia Severo Ochoa” programme under grant SEV-2017-0709. RAH, RCC, DMM, SPP, and AV acknowledge the support of the NASA Heliophysics Division, Solar Orbiter Collaboration Office under IAT NNG09EK11I. JEP acknowledges grant UKRI/STFC ST/N000692/1. All French involvements are supported by CNES and CNRS. DV is supported by the STFC Ernest Rutherford Fellowship ST/P003826/1 and STFC Consolidated Grant ST/S000240/1. The authors thank the referee for her constructive comments and suggestions, which led to the substantial improvement of this paper. Publisher Copyright: © 2020 ESO.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
AB - Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
KW - Methods: observational
KW - Space vehicles: instruments
KW - Sun: general
UR - http://www.scopus.com/inward/record.url?scp=85093528253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093528253&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202038445
DO - 10.1051/0004-6361/202038445
M3 - Article
AN - SCOPUS:85093528253
VL - 642
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A3
ER -