The solid state environment orchestrates embryonic development and tissue remodeling

C. H. Damsky, A. Moursi, Y. Zhou, S. J. Fisher, R. K. Globus

Research output: Contribution to journalArticlepeer-review


Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.

Original languageEnglish (US)
Pages (from-to)1427-1433
Number of pages7
JournalKidney International
Issue number5
StatePublished - 1997

ASJC Scopus subject areas

  • Nephrology


Dive into the research topics of 'The solid state environment orchestrates embryonic development and tissue remodeling'. Together they form a unique fingerprint.

Cite this