Theory of metastability in simple metal nanowires

J. Bürki, C. A. Stafford, D. L. Stein

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Thermally induced conductance jumps of metal nanowires are modeled using stochastic Ginzburg-Landau field theories. Changes in radius are predicted to occur via the nucleation of surface kinks at the wire ends, consistent with recent electron microscopy studies. The activation rate displays nontrivial dependence on nanowire length, and undergoes first- or second-order-like transitions as a function of length. The activation barriers of the most stable structures are predicted to be universal, i.e., independent of the radius of the wire, and proportional to the square root of the surface tension. The reduction of the activation barrier under strain is also determined.

    Original languageEnglish (US)
    Article number090601
    JournalPhysical Review Letters
    Volume95
    Issue number9
    DOIs
    StatePublished - Aug 26 2005

    ASJC Scopus subject areas

    • General Physics and Astronomy

    Fingerprint

    Dive into the research topics of 'Theory of metastability in simple metal nanowires'. Together they form a unique fingerprint.

    Cite this