TY - JOUR
T1 - Three-dimensional Green's function for fluid-loaded thin elastic cylindrical shell
T2 - Formulation and solution
AU - Felsen, L. B.
AU - Ho, J. M.
AU - Lu, I. T.
PY - 1990/2
Y1 - 1990/2
N2 - This paper treats sound radiation from a time-harmonic point pressure source located either inside or outside a thin, homogeneous, infinitely long circular cylindrical elastic shell, which is immersed in different interior and exterior fluid media. This Green's function problem is attacked by a combination of the method of separation of variables and the method of images applied to an infinitely extended azimuthal (Φ) domain. The reduced one-dimensional problems in the cylindrical (r,Φ, z) coordinates are solved by general spectral techniques in terms of one-dimensional characteristic Green's functions gr, gΦgzwhich depend on one or both of the two complex spectral separation parameters (spatial wavenumbers) A1and A2. While the one-dimensional problems in the Φ and z domains are straightforward, the presence of the shell in the radial domain introduces substantial complexity. The solution is obtained by defining the discontinuities in the pressure and normal displacement across the shell via recourse to the dynamical equations of motion inside the shell. The synthesis problem is made unique through a complete analysis of the spectral singularities of gr>4>z in their respective complex planes, which permits selection of appropriate integration contours. A host of alternative representations, whose choice (concerning utility) is motivated by the parameter range of interest, can be derived from the fundamental spectral form. This is addressed in a companion paper [Felsen et al, J. Acoust. Soc. Am. 87, 554–569 (1990) ], which also treats asymptotic reductions that lead to a variety of ray acoustic and other fundamental wave processes.
AB - This paper treats sound radiation from a time-harmonic point pressure source located either inside or outside a thin, homogeneous, infinitely long circular cylindrical elastic shell, which is immersed in different interior and exterior fluid media. This Green's function problem is attacked by a combination of the method of separation of variables and the method of images applied to an infinitely extended azimuthal (Φ) domain. The reduced one-dimensional problems in the cylindrical (r,Φ, z) coordinates are solved by general spectral techniques in terms of one-dimensional characteristic Green's functions gr, gΦgzwhich depend on one or both of the two complex spectral separation parameters (spatial wavenumbers) A1and A2. While the one-dimensional problems in the Φ and z domains are straightforward, the presence of the shell in the radial domain introduces substantial complexity. The solution is obtained by defining the discontinuities in the pressure and normal displacement across the shell via recourse to the dynamical equations of motion inside the shell. The synthesis problem is made unique through a complete analysis of the spectral singularities of gr>4>z in their respective complex planes, which permits selection of appropriate integration contours. A host of alternative representations, whose choice (concerning utility) is motivated by the parameter range of interest, can be derived from the fundamental spectral form. This is addressed in a companion paper [Felsen et al, J. Acoust. Soc. Am. 87, 554–569 (1990) ], which also treats asymptotic reductions that lead to a variety of ray acoustic and other fundamental wave processes.
UR - http://www.scopus.com/inward/record.url?scp=0025274613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025274613&partnerID=8YFLogxK
U2 - 10.1121/1.398925
DO - 10.1121/1.398925
M3 - Article
AN - SCOPUS:0025274613
SN - 0001-4966
VL - 87
SP - 543
EP - 553
JO - Journal of the Acoustical Society of America
JF - Journal of the Acoustical Society of America
IS - 2
ER -