Time-resolved photon migration in a heterogeneous tissue-vessel model

Hanli Liu, Andreas H. Hielscher, Dean C. Kurth, Steven L. Jacques, Britton Chance

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We investigate the relationship between the apparent absorption coefficient and actual absorption coefficient inside the vessels. This analytical formula predicts that the apparent absorption coefficient measured on a biological organ is a volume-weighted sum of the absorption coefficients of different absorbing components. Further, we present some apparent absorption coefficients measured in vivo in animals and humans and show that ignoring the background absorption can lead to significant errors in oxygenation determination.

Original languageEnglish (US)
Title of host publicationOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media
Subtitle of host publicationTheory, Human Studies, and Instrumentation
EditorsBritton Chance, Robert R. Alfano
PublisherSPIE
Pages150-156
Number of pages7
ISBN (Electronic)9780819417367
DOIs
StatePublished - May 30 1995
EventOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation - San Jose, United States
Duration: Feb 1 1995Feb 28 1995

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2389
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
Country/TerritoryUnited States
CitySan Jose
Period2/1/952/28/95

Keywords

  • Heterogeneity
  • Me-resolved reflectance
  • blood oxygenation
  • blood vessels
  • hemoglobin absorption

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Time-resolved photon migration in a heterogeneous tissue-vessel model'. Together they form a unique fingerprint.

Cite this