TY - GEN
T1 - Time-resolved reflectance measurements on layered tissues with strongly varying optical properties
AU - Hielscher, Andreas H.
AU - Liu, Hanli
AU - Wang, Lihong V.
AU - Tittel, Frank K.
AU - Chance, Britton
AU - Jacques, Steven L.
N1 - Publisher Copyright:
© COPYRIGHT SPIE.
PY - 1995/1/18
Y1 - 1995/1/18
N2 - Most biological tissues consist of layers with different optical properties. A few examples are the skin, the esophagus, the stomach and the wall of arteries. An understanding of how the light propagates in such layered systems is a prerequisite for any light based therapy or diagnostic scheme. In this study we investigate the influence of different kinds of layers on time resolved reflectance measurements. Experiments were performed on layered gel phantoms and the results compared to Monte Carlo simulations and diffusion theory. It is shown that when a low absorbing medium is situated on top of a high absorbing medium, the absorption coefficient of the lower layer is accessible if the differences in the absorption coefficient are only small. In the case of large difference the optical properties of the upper layer dominate the signal and shield information on the lowest layer. The degree of this shielding effect depends on layer thickness as well as optical properties. In the case of an almost absorption and scattering free layer in between two normal tissues, an overall increase of the signal is visible. However, the overall shape of the curve is about preserved. The apparent scattering coefficient is slightly decreased, while the apparent absorption coefficient is unaltered.
AB - Most biological tissues consist of layers with different optical properties. A few examples are the skin, the esophagus, the stomach and the wall of arteries. An understanding of how the light propagates in such layered systems is a prerequisite for any light based therapy or diagnostic scheme. In this study we investigate the influence of different kinds of layers on time resolved reflectance measurements. Experiments were performed on layered gel phantoms and the results compared to Monte Carlo simulations and diffusion theory. It is shown that when a low absorbing medium is situated on top of a high absorbing medium, the absorption coefficient of the lower layer is accessible if the differences in the absorption coefficient are only small. In the case of large difference the optical properties of the upper layer dominate the signal and shield information on the lowest layer. The degree of this shielding effect depends on layer thickness as well as optical properties. In the case of an almost absorption and scattering free layer in between two normal tissues, an overall increase of the signal is visible. However, the overall shape of the curve is about preserved. The apparent scattering coefficient is slightly decreased, while the apparent absorption coefficient is unaltered.
UR - http://www.scopus.com/inward/record.url?scp=0343203451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0343203451&partnerID=8YFLogxK
U2 - 10.1117/12.199216
DO - 10.1117/12.199216
M3 - Conference contribution
AN - SCOPUS:0343203451
T3 - Proceedings of SPIE - The International Society for Optical Engineering
SP - 351
EP - 359
BT - Laser Interaction with Hard and Soft Tissue II
A2 - Meier, Thomas H.
A2 - Albrecht, Hans Joerg
A2 - van Gemert, Martin J. C.
A2 - Steiner, Rudolf W.
A2 - Svaasand, Lars Othar
A2 - Delacretaz, Guy P.
PB - SPIE
T2 - Laser Interaction with Hard and Soft Tissue II 1994
Y2 - 6 September 1994 through 10 September 1994
ER -