Timely Reporting of Heavy Hitters Using External Memory

Shikha Singh, Prashant Pandey, Michael A. Bender, Jonathan W. Berry, Martín Farach-Colton, Rob Johnson, Thomas M. Kroeger, Cynthia A. Phillips

    Research output: Contribution to journalArticlepeer-review


    Given an input stream S of size N, a φ-heavy hitter is an item that occurs at least φN times in S. The problem of finding heavy-hitters is extensively studied in the database literature.We study a real-time heavy-hitters variant in which an element must be reported shortly after we see its T = φN-th occurrence (and hence it becomes a heavy hitter). We call this the Timely Event Detection (TED) Problem. The TED problem models the needs of many real-world monitoring systems, which demand accurate (i.e., no false negatives) and timely reporting of all events from large, high-speed streams with a low reporting threshold (high sensitivity).Like the classic heavy-hitters problem, solving the TED problem without false-positives requires large space (ω (N) words). Thus in-RAM heavy-hitters algorithms typically sacrifice accuracy (i.e., allow false positives), sensitivity, or timeliness (i.e., use multiple passes).We show how to adapt heavy-hitters algorithms to external memory to solve the TED problem on large high-speed streams while guaranteeing accuracy, sensitivity, and timeliness. Our data structures are limited only by I/O-bandwidth (not latency) and support a tunable tradeoff between reporting delay and I/O overhead. With a small bounded reporting delay, our algorithms incur only a logarithmic I/O overhead.We implement and validate our data structures empirically using the Firehose streaming benchmark. Multi-threaded versions of our structures can scale to process 11M observations per second before becoming CPU bound. In comparison, a naive adaptation of the standard heavy-hitters algorithm to external memory would be limited by the storage device's random I/O throughput, i.e., ≈100K observations per second.

    Original languageEnglish (US)
    Article number3472392
    JournalACM Transactions on Database Systems
    Issue number4
    StatePublished - Dec 2021


    • Dictionary data structure
    • external-memory algorithms
    • streaming algorithms

    ASJC Scopus subject areas

    • Information Systems


    Dive into the research topics of 'Timely Reporting of Heavy Hitters Using External Memory'. Together they form a unique fingerprint.

    Cite this