TY - JOUR
T1 - Topochemistry and photomechanical effects in crystals of green fluorescent protein-like chromophores
T2 - Effects of hydrogen bonding and crystal packing
AU - Naumov, Panče
AU - Kowalik, Janusz
AU - Solntsev, Kyril M.
AU - Baldridge, Anthony
AU - Moon, Jong Seok
AU - Kranz, Christine
AU - Tolbert, Laren M.
PY - 2010/4/28
Y1 - 2010/4/28
N2 - To obtain insight into the effects of the environment on the photophysics and photochemistry of the green fluorescence protein (GFP), eight crystal structures of six synthetic aryl-substituted analogues (2-fluoro, 2-methyl, 3-hydroxy, 3-methoxy, 2,4-dimethyl and 2,5-dimethyl) of the GFP chromophore (4-hydroxy-benzylidenedimethylimidazolinone) were determined and correlated with their two-dimensional steady-state and time-resolved solid-state excitation-emission spectra. The stacking between the molecules greatly affected the emission energy and the lifetime of the emission of the chromophore, implying that π - π interactions could be critical for the photophysics of GFP. The reaction pathways were dependent on the excitation energy, resulting either in [2 + 2] photodimerization at the bridging double bond (UV excitation) or flipping of the imidazolone ring (visible excitation). The meta-hydroxy chromophore (3-HOBDI) was the only GFP-chromophore analogue that was obtained as more than one stable polymorph in the pure state thus far. Due to the asymmetric substitution with hydrogen bond donors and acceptors, 3-HOBDI is tetramorphic, the forms showing distinctly different structure and behavior: (1) while one of the polymorphs (3-HOBDI-A), having multilayer structure with alternating stereochemistry of linear hydrogen-bonded motifs, undergoes photodimerization under UV light, (2) another (3-HOBDI-C), which has dimeric head-to-tail structure, shows Z-to-E isomerization via τ-one-bond flip of the imidazolone ring by excitation in the visible region. X-ray diffraction analysis of a partially reacted single crystal of 3-HOBDI-C provided the first direct evidence of τ-one-bond flip occurring in a GFP-like compound. Moreover, the cooperative action of the photodimerization of 3-HOBDI-A appears as a photomechanical effect of unprecedented magnitude for a single crystalline specimen, where photoexcited single crystals bend to more than 90° without breaking.
AB - To obtain insight into the effects of the environment on the photophysics and photochemistry of the green fluorescence protein (GFP), eight crystal structures of six synthetic aryl-substituted analogues (2-fluoro, 2-methyl, 3-hydroxy, 3-methoxy, 2,4-dimethyl and 2,5-dimethyl) of the GFP chromophore (4-hydroxy-benzylidenedimethylimidazolinone) were determined and correlated with their two-dimensional steady-state and time-resolved solid-state excitation-emission spectra. The stacking between the molecules greatly affected the emission energy and the lifetime of the emission of the chromophore, implying that π - π interactions could be critical for the photophysics of GFP. The reaction pathways were dependent on the excitation energy, resulting either in [2 + 2] photodimerization at the bridging double bond (UV excitation) or flipping of the imidazolone ring (visible excitation). The meta-hydroxy chromophore (3-HOBDI) was the only GFP-chromophore analogue that was obtained as more than one stable polymorph in the pure state thus far. Due to the asymmetric substitution with hydrogen bond donors and acceptors, 3-HOBDI is tetramorphic, the forms showing distinctly different structure and behavior: (1) while one of the polymorphs (3-HOBDI-A), having multilayer structure with alternating stereochemistry of linear hydrogen-bonded motifs, undergoes photodimerization under UV light, (2) another (3-HOBDI-C), which has dimeric head-to-tail structure, shows Z-to-E isomerization via τ-one-bond flip of the imidazolone ring by excitation in the visible region. X-ray diffraction analysis of a partially reacted single crystal of 3-HOBDI-C provided the first direct evidence of τ-one-bond flip occurring in a GFP-like compound. Moreover, the cooperative action of the photodimerization of 3-HOBDI-A appears as a photomechanical effect of unprecedented magnitude for a single crystalline specimen, where photoexcited single crystals bend to more than 90° without breaking.
UR - http://www.scopus.com/inward/record.url?scp=77952572340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952572340&partnerID=8YFLogxK
U2 - 10.1021/ja100844m
DO - 10.1021/ja100844m
M3 - Article
C2 - 20369833
AN - SCOPUS:77952572340
SN - 0002-7863
VL - 132
SP - 5845
EP - 5857
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 16
ER -