Topology preserving atlas construction from shape data without correspondence using sparse parameters

Stanley Durrleman, Marcel Prastawa, Julie R. Korenberg, Sarang Joshi, Alain Trouvé, Guido Gerig

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Statistical analysis of shapes, performed by constructing an atlas composed of an average model of shapes within a population and associated deformation maps, is a fundamental aspect of medical imaging studies. Usual methods for constructing a shape atlas require point correspondences across subjects, which are difficult in practice. By contrast, methods based on currents do not require correspondence. However, existing atlas construction methods using currents suffer from two limitations. First, the template current is not in the form of a topologically correct mesh, which makes direct analysis on shapes difficult. Second, the deformations are parametrized by vectors at the same location as the normals of the template current which often provides a parametrization that is more dense than required. In this paper, we propose a novel method for constructing shape atlases using currents where topology of the template is preserved and deformation parameters are optimized independently of the shape parameters. We use an L1 -type prior that enables us to adaptively compute sparse and low dimensional parameterization of deformations. We show an application of our method for comparing anatomical shapes of patients with Down’s syndrome and healthy controls, where the sparse parametrization of diffeomorphisms decreases the parameter dimension by one order of magnitude.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI2012 - 15th International Conference, Proceedings
EditorsNicholas Ayache, Herve Delingette, Polina Golland, Kensaku Mori
PublisherSpringer Verlag
Pages223-230
Number of pages8
ISBN (Print)9783642334535
DOIs
StatePublished - 2012
Event15th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2012 - Nice, France
Duration: Oct 1 2012Oct 5 2012

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume7512 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2012
Country/TerritoryFrance
CityNice
Period10/1/1210/5/12

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Topology preserving atlas construction from shape data without correspondence using sparse parameters'. Together they form a unique fingerprint.

Cite this