Toward image based visual servoing for aerial grasping and perching

Justin Thomas, Giuseppe Loianno, Koushil Sreenath, Vijay Kumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper addresses the dynamics, control, planning, and visual servoing for micro aerial vehicles to perform high-speed aerial grasping tasks. We draw inspiration from agile, fast-moving birds, such as raptors, that detect, locate, and execute high-speed swoop maneuvers to capture prey. Since these grasping maneuvers are predominantly in the sagittal plane, we consider the planar system and present mathematical models and algorithms for motion planning and control, required to incorporate similar capabilities in quadrotors equipped with a monocular camera. In particular, we develop a dynamical model directly in the image space, show that this is a differentially-flat system with the image features serving as flat outputs, outline a method for generating trajectories directly in the image feature space, develop a geometric visual controller that considers the second order dynamics (in contrast to most visual servoing controllers that assume first order dynamics), and present validation of our methods through both simulations and experiments.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2113-2118
Number of pages6
ISBN (Electronic)9781479936854, 9781479936854
DOIs
StatePublished - Sep 22 2014
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: May 31 2014Jun 7 2014

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period5/31/146/7/14

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Toward image based visual servoing for aerial grasping and perching'. Together they form a unique fingerprint.

Cite this