TY - GEN
T1 - Towards analysis of growth trajectory through multimodal longitudinal MR imaging
AU - Sadeghi, Neda
AU - Prastawa, Marcel
AU - Gilmore, John H.
AU - Lin, Weili
AU - Gerig, Guido
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - The human brain undergoes significant changes in the first few years after birth, but knowledge about this critical period of development is quite limited. Previous neuroimaging studies have been mostly focused on morphometric measures such as volume and shape, although tissue property measures related to the degree of myelination and axon density could also add valuable information to our understanding of brain maturation. Our goal is to complement brain growth analysis via morphometry with the study of longitudinal tissue property changes as reflected in patterns observed in multi-modal structural MRI and DTI. Our preliminary study includes eight healthy pediatric subjects with repeated scans at the age of two weeks, one year, and two years with T1, T2, PD, and DT MRI. Analysis is driven by the registration of multiple modalities and time points within and between subjects into a common coordinate frame, followed by image intensity normalization. Quantitative tractography with diffusion and structural image parameters serves for multi-variate tissue analysis. Different patterns of rapid changes were observed in the corpus callosum and the posterior and anterior internal capsule, structures known for distinctly different myelination growth. There are significant differences in central versus peripheral white matter. We demonstrate that the combined longitudinal analysis of structural and diffusion MRI proves superior to individual modalities and might provide a better understanding of the trajectory of early neurodevelopment.
AB - The human brain undergoes significant changes in the first few years after birth, but knowledge about this critical period of development is quite limited. Previous neuroimaging studies have been mostly focused on morphometric measures such as volume and shape, although tissue property measures related to the degree of myelination and axon density could also add valuable information to our understanding of brain maturation. Our goal is to complement brain growth analysis via morphometry with the study of longitudinal tissue property changes as reflected in patterns observed in multi-modal structural MRI and DTI. Our preliminary study includes eight healthy pediatric subjects with repeated scans at the age of two weeks, one year, and two years with T1, T2, PD, and DT MRI. Analysis is driven by the registration of multiple modalities and time points within and between subjects into a common coordinate frame, followed by image intensity normalization. Quantitative tractography with diffusion and structural image parameters serves for multi-variate tissue analysis. Different patterns of rapid changes were observed in the corpus callosum and the posterior and anterior internal capsule, structures known for distinctly different myelination growth. There are significant differences in central versus peripheral white matter. We demonstrate that the combined longitudinal analysis of structural and diffusion MRI proves superior to individual modalities and might provide a better understanding of the trajectory of early neurodevelopment.
KW - Brain development
KW - Diffusion tensor imaging
KW - Growth trajectory
KW - Longitudinal analysis
KW - MRI
UR - http://www.scopus.com/inward/record.url?scp=79751520711&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79751520711&partnerID=8YFLogxK
U2 - 10.1117/12.844526
DO - 10.1117/12.844526
M3 - Conference contribution
AN - SCOPUS:79751520711
SN - 9780819480248
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2010
T2 - Medical Imaging 2010: Image Processing
Y2 - 14 February 2010 through 16 February 2010
ER -