TY - GEN
T1 - Towards Consistent Natural-Language Explanations via Explanation-Consistency Finetuning
AU - Chen, Yanda
AU - Singh, Chandan
AU - Liu, Xiaodong
AU - Zuo, Simiao
AU - Yu, Bin
AU - He, He
AU - Gao, Jianfeng
N1 - Publisher Copyright:
© 2025 Association for Computational Linguistics.
PY - 2025
Y1 - 2025
N2 - Large language models (LLMs) often generate convincing, fluent explanations. However, different from humans, they often generate inconsistent explanations on different inputs. For example, an LLM may explain “all birds can fly” when answering the question “Can sparrows fly?” but meanwhile answer “no” to the related question “Can penguins fly?”. Explanations should be consistent across related examples so that they allow humans to simulate the LLM's decision process on multiple examples. We propose explanation-consistency finetuning (EC-finetuning), a method that adapts LLMs to generate more consistent natural-language explanations on related examples. EC-finetuning involves finetuning LLMs on synthetic data that is carefully constructed to contain consistent explanations. Across a variety of question-answering datasets in various domains, EC-finetuning yields a 10.0% relative explanation consistency improvement on 4 finetuning datasets, and generalizes to 7 out-of-distribution datasets not seen during finetuning (+4.5% relative). We will make our code available for reproducibility.
AB - Large language models (LLMs) often generate convincing, fluent explanations. However, different from humans, they often generate inconsistent explanations on different inputs. For example, an LLM may explain “all birds can fly” when answering the question “Can sparrows fly?” but meanwhile answer “no” to the related question “Can penguins fly?”. Explanations should be consistent across related examples so that they allow humans to simulate the LLM's decision process on multiple examples. We propose explanation-consistency finetuning (EC-finetuning), a method that adapts LLMs to generate more consistent natural-language explanations on related examples. EC-finetuning involves finetuning LLMs on synthetic data that is carefully constructed to contain consistent explanations. Across a variety of question-answering datasets in various domains, EC-finetuning yields a 10.0% relative explanation consistency improvement on 4 finetuning datasets, and generalizes to 7 out-of-distribution datasets not seen during finetuning (+4.5% relative). We will make our code available for reproducibility.
UR - http://www.scopus.com/inward/record.url?scp=85218492956&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218492956&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85218492956
T3 - Proceedings - International Conference on Computational Linguistics, COLING
SP - 7558
EP - 7568
BT - Main Conference
A2 - Rambow, Owen
A2 - Wanner, Leo
A2 - Apidianaki, Marianna
A2 - Al-Khalifa, Hend
A2 - Di Eugenio, Barbara
A2 - Schockaert, Steven
PB - Association for Computational Linguistics (ACL)
T2 - 31st International Conference on Computational Linguistics, COLING 2025
Y2 - 19 January 2025 through 24 January 2025
ER -