Tradeoff Between Delay and High SNR Capacity in Quantized MIMO Systems

Abbas Khalili, Farhad Shirani, Elza Erkip, Yonina C. Eldar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Analog-to-digital converters (ADCs) are a major contributor to the power consumption of multiple-input multiple-output (MIMO) communication systems with large number of antennas. Use of low resolution ADCs has been proposed as a means to decrease power consumption in MIMO receivers. However, reducing the ADC resolution leads to performance loss in terms of achievable transmission rates. In order to mitigate the rate-loss, the receiver can perform analog processing of the received signals before quantization. Prior works consider one-shot analog processing where at each channel-use, analog linear combinations of the received signals are fed to a set of one-bit threshold ADCs. In this paper, a receiver architecture is proposed which uses a sequence of delay elements to allow for blockwise linear combining of the received analog signals. In the high signal to noise ratio regime, it is shown that the proposed architecture achieves the maximum achievable transmission rate given a fixed number of one-bit ADCs. Furthermore, a tradeoff between transmission rate and the number of delay elements is identified which quantifies the increase in maximum achievable rate as the number of delay elements is increased.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages597-601
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/7/197/12/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Tradeoff Between Delay and High SNR Capacity in Quantized MIMO Systems'. Together they form a unique fingerprint.

Cite this