TY - GEN
T1 - Trading off Utility, Informativeness, and Complexity in Emergent Communication
AU - Tucker, Mycal
AU - Levy, Roger
AU - Shah, Julie
AU - Zaslavsky, Noga
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Emergent communication (EC) research often focuses on optimizing task-specific utility as a driver for communication. However, there is increasing evidence that human languages are shaped by task-general communicative constraints and evolve under pressure to optimize the Information Bottleneck (IB) tradeoff between the informativeness and complexity of the lexicon. Here, we integrate these two approaches by trading off utility, informativeness, and complexity in EC. To this end, we propose Vector-Quantized Variational Information Bottleneck (VQ-VIB), a method for training neural agents to encode inputs into discrete signals embedded in a continuous space. We evaluate our approach in multi-agent reinforcement learning settings and in color reference games and show that: (1) VQ-VIB agents can continuously adapt to changing communicative needs and, in the color domain, align with human languages; (2) the emergent VQ-VIB embedding spaces are semantically meaningful and perceptually grounded; and (3) encouraging informativeness leads to faster convergence rates and improved utility, both in VQ-VIB and in prior neural architectures for symbolic EC, with VQ-VIB achieving higher utility for any given complexity. This work offers a new framework for EC that is grounded in information-theoretic principles that are believed to characterize human language evolution and that may facilitate human-agent interaction.
AB - Emergent communication (EC) research often focuses on optimizing task-specific utility as a driver for communication. However, there is increasing evidence that human languages are shaped by task-general communicative constraints and evolve under pressure to optimize the Information Bottleneck (IB) tradeoff between the informativeness and complexity of the lexicon. Here, we integrate these two approaches by trading off utility, informativeness, and complexity in EC. To this end, we propose Vector-Quantized Variational Information Bottleneck (VQ-VIB), a method for training neural agents to encode inputs into discrete signals embedded in a continuous space. We evaluate our approach in multi-agent reinforcement learning settings and in color reference games and show that: (1) VQ-VIB agents can continuously adapt to changing communicative needs and, in the color domain, align with human languages; (2) the emergent VQ-VIB embedding spaces are semantically meaningful and perceptually grounded; and (3) encouraging informativeness leads to faster convergence rates and improved utility, both in VQ-VIB and in prior neural architectures for symbolic EC, with VQ-VIB achieving higher utility for any given complexity. This work offers a new framework for EC that is grounded in information-theoretic principles that are believed to characterize human language evolution and that may facilitate human-agent interaction.
UR - http://www.scopus.com/inward/record.url?scp=85162943154&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162943154&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162943154
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -