TY - JOUR
T1 - Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
AU - Soo, Wayne W.M.
AU - Goudar, Vishwa
AU - Wang, Xiao Jing
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Training recurrent neural networks (RNNs) has become a go-to approach for generating and evaluating mechanistic neural hypotheses for cognition. The ease and efficiency of training RNNs with backpropagation through time and the availability of robustly supported deep learning libraries has made RNN modeling more approachable and accessible to neuroscience. Yet, a major technical hindrance remains. Cognitive processes such as working memory and decision making involve neural population dynamics over a long period of time within a behavioral trial and across trials. It is difficult to train RNNs to accomplish tasks where neural representations and dynamics have long temporal dependencies without gating mechanisms such as LSTMs or GRUs which currently lack experimental support and prohibit direct comparison between RNNs and biological neural circuits. We tackled this problem based on the idea of specialized skip-connections through time to support the emergence of task-relevant dynamics, and subsequently reinstitute biological plausibility by reverting to the original architecture. We show that this approach enables RNNs to successfully learn cognitive tasks that prove impractical if not impossible to learn using conventional methods. Over numerous tasks considered here, we achieve less training steps and shorter wall-clock times, particularly in tasks that require learning long-term dependencies via temporal integration over long timescales or maintaining a memory of past events in hidden-states. Our methods expand the range of experimental tasks that biologically plausible RNN models can learn, thereby supporting the development of theory for the emergent neural mechanisms of computations involving long-term dependencies.
AB - Training recurrent neural networks (RNNs) has become a go-to approach for generating and evaluating mechanistic neural hypotheses for cognition. The ease and efficiency of training RNNs with backpropagation through time and the availability of robustly supported deep learning libraries has made RNN modeling more approachable and accessible to neuroscience. Yet, a major technical hindrance remains. Cognitive processes such as working memory and decision making involve neural population dynamics over a long period of time within a behavioral trial and across trials. It is difficult to train RNNs to accomplish tasks where neural representations and dynamics have long temporal dependencies without gating mechanisms such as LSTMs or GRUs which currently lack experimental support and prohibit direct comparison between RNNs and biological neural circuits. We tackled this problem based on the idea of specialized skip-connections through time to support the emergence of task-relevant dynamics, and subsequently reinstitute biological plausibility by reverting to the original architecture. We show that this approach enables RNNs to successfully learn cognitive tasks that prove impractical if not impossible to learn using conventional methods. Over numerous tasks considered here, we achieve less training steps and shorter wall-clock times, particularly in tasks that require learning long-term dependencies via temporal integration over long timescales or maintaining a memory of past events in hidden-states. Our methods expand the range of experimental tasks that biologically plausible RNN models can learn, thereby supporting the development of theory for the emergent neural mechanisms of computations involving long-term dependencies.
UR - http://www.scopus.com/inward/record.url?scp=85191160533&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85191160533&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85191160533
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -