TY - JOUR
T1 - trans-lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases
AU - Rechkoblit, Olga
AU - Zhang, Yanbin
AU - Guo, Dongyu
AU - Wang, Zhigang
AU - Amin, Shantu
AU - Krzeminsky, Jacek
AU - Louneva, Natalia
AU - Geacintov, Nicholas E.
PY - 2002/8/23
Y1 - 2002/8/23
N2 - The effectiveness of in vitro primer elongation reactions catalyzed by human bypass DNA polymerases κ (hDinB1), pol η (hRad30A), pol ι (hRad30B), and yeast pol ζ (Rev3 and Rev7) in site-specifically modified template oligonucleotide strands were studied in vitro. The templates contained single bulky lesions derived from the trans-addition of the mutagenic (+)- or (-)-enantiomers of r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (a metabolite of the environmental carcinogen benzo[a]pyrene), to the exocyclic amino groups of guanine or adenine in oligonucleotide templates 33, or more, bases long. In "running start" primer extension reactions, pol κ effectively bypassed both the stereoisomeric (+)- and (-)-trans-guanine adducts but not the analogous adenine adducts. In sharp contrast, pol η, which exhibits considerable sequence homology with pol κ (both belong to the group of Y family polymerases), is partially blocked by the guanine adducts and the (-)-trans-adenine adduct, although the stereoisomeric (+)-trans-adenine adduct is more successfully bypassed. Neither pol ι nor pol ζ, either alone or in combination, were effective in trans-lesion synthesis past the same adducts. In all cases, the fidelity of insertion is dependent on adduct stereochemistry and structure. Generally, error-free nucleotide insertion opposite the lesions tends to depend more on adduct stereochemistry than error-prone insertion. None of the polymerases tested are a universal bypass polymerase for the stereoisomeric bulky polycyclic aromatic hydrocarbon-DNA adducts derived from anti-BPDE.
AB - The effectiveness of in vitro primer elongation reactions catalyzed by human bypass DNA polymerases κ (hDinB1), pol η (hRad30A), pol ι (hRad30B), and yeast pol ζ (Rev3 and Rev7) in site-specifically modified template oligonucleotide strands were studied in vitro. The templates contained single bulky lesions derived from the trans-addition of the mutagenic (+)- or (-)-enantiomers of r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (a metabolite of the environmental carcinogen benzo[a]pyrene), to the exocyclic amino groups of guanine or adenine in oligonucleotide templates 33, or more, bases long. In "running start" primer extension reactions, pol κ effectively bypassed both the stereoisomeric (+)- and (-)-trans-guanine adducts but not the analogous adenine adducts. In sharp contrast, pol η, which exhibits considerable sequence homology with pol κ (both belong to the group of Y family polymerases), is partially blocked by the guanine adducts and the (-)-trans-adenine adduct, although the stereoisomeric (+)-trans-adenine adduct is more successfully bypassed. Neither pol ι nor pol ζ, either alone or in combination, were effective in trans-lesion synthesis past the same adducts. In all cases, the fidelity of insertion is dependent on adduct stereochemistry and structure. Generally, error-free nucleotide insertion opposite the lesions tends to depend more on adduct stereochemistry than error-prone insertion. None of the polymerases tested are a universal bypass polymerase for the stereoisomeric bulky polycyclic aromatic hydrocarbon-DNA adducts derived from anti-BPDE.
UR - http://www.scopus.com/inward/record.url?scp=0037163036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037163036&partnerID=8YFLogxK
U2 - 10.1074/jbc.M201167200
DO - 10.1074/jbc.M201167200
M3 - Article
C2 - 12063247
AN - SCOPUS:0037163036
SN - 0021-9258
VL - 277
SP - 30488
EP - 30494
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 34
ER -