TRANSFER LEARNING WITH DEEP TABULAR MODELS

Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Goldstein, Andrew Gordon Wilson, Micah Goldblum

Research output: Contribution to conferencePaperpeer-review

Abstract

Recent work on deep learning for tabular data demonstrates the strong performance of deep tabular models, often bridging the gap between gradient boosted decision trees and neural networks. Accuracy aside, a major advantage of neural models is that they are easily fine-tuned in new domains and learn reusable features. This property is often exploited in computer vision and natural language applications, where transfer learning is indispensable when task-specific training data is scarce. In this work, we explore the benefits that representation learning provides for knowledge transfer in the tabular domain. We conduct experiments in a realistic medical diagnosis test bed with limited amounts of downstream data and find that transfer learning with deep tabular models provides a definitive advantage over gradient boosted decision tree methods. We further compare the supervised and self-supervised pre-training strategies and provide practical advice on transfer learning with tabular models. Finally, we propose a pseudo-feature method for cases where the upstream and downstream feature sets differ, a tabular-specific problem widespread in real-world applications.

Original languageEnglish (US)
StatePublished - 2023
Event11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda
Duration: May 1 2023May 5 2023

Conference

Conference11th International Conference on Learning Representations, ICLR 2023
Country/TerritoryRwanda
CityKigali
Period5/1/235/5/23

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'TRANSFER LEARNING WITH DEEP TABULAR MODELS'. Together they form a unique fingerprint.

Cite this