@article{aa2b61a70b6143c3bed4ee716ffdcdfe,
title = "Transformation model based regression with dependently truncated and independently censored data",
abstract = "Truncated survival data arise when the event time is observed only if it falls within a subject specific region. The conventional risk-set adjusted Kaplan–Meier estimator or Cox model can be used for estimation of the event time distribution or regression coefficient. However, the validity of these approaches relies on the assumption of quasi-independence between truncation and event times. One model that can be used for the estimation of the survival function under dependent truncation is a structural transformation model that relates a latent, quasi-independent truncation time to the observed dependent truncation time and the event time. The transformation model approach is appealing for its simple interpretation, computational simplicity and flexibility. In this paper, we extend the transformation model approach to the regression setting. We propose three methods based on this model, in addition to a piecewise transformation model that adds greater flexibility. We investigate the performance of the proposed models through simulation studies and apply them to a study on cognitive decline in Alzheimer's disease from the National Alzheimer's Coordinating Center. We have developed an R package, tranSurv, for implementation of our method.",
keywords = "Alzheimer's disease, Cox model, Kendall's tau, inverse probability weighting, quasi-independence",
author = "Jing Qian and Chiou, {Sy Han} and Betensky, {Rebecca A.}",
note = "Funding Information: This research was supported in part by the Harvard NeuroDiscovery Center, the Harvard Clinical and Translational Science Center NIH UL1 TR001102, NIH CA075971, NIH NS094610, NIH NS048005, NIH P50AG005134, NIH P01AG036694 and NIH P30AG066512. Jing Qian and Sy Han Chiou contributed equally to this work. The NACC database is funded by NIH Grant U24 AG072122. NACC data are contributed by the NIA‐funded ADCs: P50 AG005131 (PI James Brewer, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG005138 (PI Mary Sano, PhD), P50 AG005142 (PI Helena Chui, MD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005681 (PI John Morris, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG008051 (PI Thomas Wisniewski, MD), P50 AG008702 (PI Scott Small, MD), P30 AG010124 (PI John Trojanowski, MD, PhD), P30 AG010129 (PI Charles DeCarli, MD), P30 AG010133 (PI Andrew Saykin, PsyD), P30 AG010161 (PI David Bennett, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG013854 (PI Robert Vassar, PhD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P30 AG019610 (PI Eric Reiman, MD), P50 AG023501 (PI Bruce Miller, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P30 AG028383 (PI Linda Van Eldik, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P30 AG035982 (PI Russell Swerdlow, MD), P50 AG047266 (PI Todd Golde, MD, PhD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG049638 (PI Suzanne Craft, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Marwan Sabbagh, MD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD) and P30 AG072959 (PI James Leverenz, MD). Funding Information: This research was supported in part by the Harvard NeuroDiscovery Center, the Harvard Clinical and Translational Science Center NIH UL1 TR001102, NIH CA075971, NIH NS094610, NIH NS048005, NIH P50AG005134, NIH P01AG036694 and NIH P30AG066512. Jing Qian and Sy Han Chiou contributed equally to this work. The NACC database is funded by NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADCs: P50 AG005131 (PI James Brewer, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG005138 (PI Mary Sano, PhD), P50 AG005142 (PI Helena Chui, MD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005681 (PI John Morris, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG008051 (PI Thomas Wisniewski, MD), P50 AG008702 (PI Scott Small, MD), P30 AG010124 (PI John Trojanowski, MD, PhD), P30 AG010129 (PI Charles DeCarli, MD), P30 AG010133 (PI Andrew Saykin, PsyD), P30 AG010161 (PI David Bennett, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG013854 (PI Robert Vassar, PhD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P30 AG019610 (PI Eric Reiman, MD), P50 AG023501 (PI Bruce Miller, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P30 AG028383 (PI Linda Van Eldik, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P30 AG035982 (PI Russell Swerdlow, MD), P50 AG047266 (PI Todd Golde, MD, PhD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG049638 (PI Suzanne Craft, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Marwan Sabbagh, MD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD) and P30 AG072959 (PI James Leverenz, MD). Publisher Copyright: {\textcopyright} 2022 Royal Statistical Society.",
year = "2022",
month = mar,
doi = "10.1111/rssc.12538",
language = "English (US)",
volume = "71",
pages = "395--416",
journal = "Journal of the Royal Statistical Society. Series C: Applied Statistics",
issn = "0035-9254",
publisher = "Oxford University Press",
number = "2",
}