Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks through Sequential Reversible and Irreversible Chemistries

Dongyang Zhu, Xiaoyi Li, Yilin Li, Morgan Barnes, Chia Ping Tseng, Safiya Khalil, Muhammad M. Rahman, Pulickel M. Ajayan, Rafael Verduzco

Research output: Contribution to journalArticlepeer-review

Abstract

Covalent organic frameworks (COFs) are crystalline porous materials linked by dynamic covalent bonds. Dynamic chemistries enable the transformation of an initially amorphous network into a porous and crystalline COF. While dynamic chemistries have been leveraged to realize transformations between different types of COFs, including transformations from two-dimensional (2D) to three-dimensional (3D) COFs and insertion of different linking groups, the transformation of linear polymers into COFs has not yet been reported. Herein, we demonstrate an approach to transform linear imine-linked polymers into ketone-linked COFs through a linker replacement strategy with triformylphloroglucinol (TPG). TPG first reacts through dynamic chemistry to replace linkers in the linear polymers and then undergoes irreversible tautomerism to produce ketone linkages. We have analyzed the time-dependent transformation from the linear polymer into COF through powder X-ray diffraction, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to understand the transition and substitution mechanisms. This work demonstrates another route to produce COFs through sequential reversible and irreversible chemistries and provides a potential approach to synthesizing COFs through the solution processing of linear polymers followed by transformation into the desired COF structure.

Original languageEnglish (US)
Pages (from-to)413-419
Number of pages7
JournalChemistry of Materials
Volume33
Issue number1
DOIs
StatePublished - Jan 12 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks through Sequential Reversible and Irreversible Chemistries'. Together they form a unique fingerprint.

Cite this