Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex

Jean Laurens, Sheng Liu, Xiong Jie Yu, Raymond Chan, David Dickman, Gregory C. DeAngelis, Dora E. Angelaki

Research output: Contribution to journalArticle

Abstract

Sensory signals undergo substantial recoding when neural activity is relayed from sensors through pre-thalamic and thalamic nuclei to cortex. To explore how temporal dynamics and directional tuning are sculpted in hierarchical vestibular circuits, we compared responses of macaque otolith afferents with neurons in the vestibular and cerebellar nuclei, as well as five cortical areas, to identical three-dimensional translational motion. We demonstrate a remarkable spatio-temporal transformation: otolith afferents carry spatially aligned cosine-tuned translational acceleration and jerk signals. In contrast, brainstem and cerebellar neurons exhibit non-linear, mixed selectivity for translational velocity, acceleration, jerk and position. Furthermore, these components often show dissimilar spatial tuning. Moderate further transformation of translation signals occurs in the cortex, such that similar spatio-temporal properties are found in multiple cortical areas. These results suggest that the first synapse represents a key processing element in vestibular pathways, robustly shaping how self-motion is represented in central vestibular circuits and cortical areas.

Original languageEnglish (US)
Article numbere20787
JournaleLife
Volume6
DOIs
StatePublished - Jan 11 2017

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex'. Together they form a unique fingerprint.

Cite this