TY - JOUR
T1 - Transient reprogramming of postnatal cardiomyocytes to a dedifferentiated state
AU - Kisby, Thomas
AU - de Lázaro, Irene
AU - Stylianou, Maria
AU - Cossu, Giulio
AU - Kostarelos, Kostas
N1 - Publisher Copyright:
Copyright: © 2021 Kisby et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/5
Y1 - 2021/5
N2 - In contrast to mammals, lower vertebrates are capable of extraordinary myocardial regeneration thanks to the ability of their cardiomyocytes to undergo transient dedifferentiation and proliferation. Somatic cells can be temporarily reprogrammed to a proliferative, dedifferentiated state through forced expression of Oct3/4, Sox2, Klf4 and c-Myc (OSKM). Here, we aimed to induce transient reprogramming of mammalian cardiomyocytes in vitro utilising an OSKM-encoding non-integrating vector. Reprogramming factor expression in postnatal rat and mouse cardiomyocytes triggered rapid but limited cell dedifferentiation. Concomitantly, a significant increase in cell viability, cell cycle related gene expression and Ki67 positive cells was observed consistent with an enhanced cell cycle activation. The transient nature of this partial reprogramming was confirmed as cardiomyocyte-specific cell morphology, gene expression and contractile activity were spontaneously recovered by day 15 after viral transduction. This study provides the first evidence that adenoviral OSKM delivery can induce partial reprogramming of postnatal cardiomyocytes. Therefore, adenoviral mediated transient reprogramming could be a novel and feasible strategy to recapitulate the regenerative mechanisms of lower vertebrates.
AB - In contrast to mammals, lower vertebrates are capable of extraordinary myocardial regeneration thanks to the ability of their cardiomyocytes to undergo transient dedifferentiation and proliferation. Somatic cells can be temporarily reprogrammed to a proliferative, dedifferentiated state through forced expression of Oct3/4, Sox2, Klf4 and c-Myc (OSKM). Here, we aimed to induce transient reprogramming of mammalian cardiomyocytes in vitro utilising an OSKM-encoding non-integrating vector. Reprogramming factor expression in postnatal rat and mouse cardiomyocytes triggered rapid but limited cell dedifferentiation. Concomitantly, a significant increase in cell viability, cell cycle related gene expression and Ki67 positive cells was observed consistent with an enhanced cell cycle activation. The transient nature of this partial reprogramming was confirmed as cardiomyocyte-specific cell morphology, gene expression and contractile activity were spontaneously recovered by day 15 after viral transduction. This study provides the first evidence that adenoviral OSKM delivery can induce partial reprogramming of postnatal cardiomyocytes. Therefore, adenoviral mediated transient reprogramming could be a novel and feasible strategy to recapitulate the regenerative mechanisms of lower vertebrates.
UR - http://www.scopus.com/inward/record.url?scp=85105317890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105317890&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0251054
DO - 10.1371/journal.pone.0251054
M3 - Article
C2 - 33951105
AN - SCOPUS:85105317890
SN - 1932-6203
VL - 16
JO - PloS one
JF - PloS one
IS - 5 May
M1 - e0251054
ER -