Transient thermo-mechanical stress analysis of hot surface probe using sequentially coupled CFD-FEA approach

Sang Guk Kang, Je Ir Ryu, Austen H. Motily, Prapassorn Numkiatsakul, Tonghun Lee, Waltraud M. Kriven, Kenneth S. Kim, Chol Bum M. Kweon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Energy addition using a hot surface probe is required for reliable ignition of aircraft compression ignition engines running on fuel variations and at altitude conditions. Thus, durability of the hot surface probe is crucial for application in these engines. Thermo-mechanical stress is one of the key parameters that determine durability, which requires an accurate prediction of the transient temperature field based on well-defined boundary conditions representing the dynamic and complex fluid flow inside engines. To meet this requirement, the present study focuses on transient thermo-mechanical stress analysis using a sequentially coupled CFD-FEA approach to understand transient thermo-mechanical responses of the hot surface probe. A 3D transient reacting flow simulation was conducted first using CONVERGE software, the results of which were exported to map thermal and pressure boundary conditions onto a structural finite element mesh. Transient thermo-mechanical stress analysis was performed sequentially using ABAQUS software utilizing the mapped boundary conditions. The results such as transient temperature history, resultant thermo-mechanical stress, displacement, potential failure modes, etc. were critically reviewed, which can provide helpful information for further design improvement.

Original languageEnglish (US)
Title of host publicationProceedings of ASME 2021 Internal Combustion Engine Division Fall Technical Conference, ICEF 2021
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791885512
DOIs
StatePublished - 2021
EventASME 2021 Internal Combustion Engine Division Fall Technical Conference, ICEF 2021 - Virtual, Online
Duration: Oct 13 2021Oct 15 2021

Publication series

NameProceedings of ASME 2021 Internal Combustion Engine Division Fall Technical Conference, ICEF 2021

Conference

ConferenceASME 2021 Internal Combustion Engine Division Fall Technical Conference, ICEF 2021
CityVirtual, Online
Period10/13/2110/15/21

Keywords

  • CFD-FEA Coupling
  • Computational Fluid Dynamics
  • Finite Element Analysis
  • Heat Transfer
  • Ignition Assistant
  • Thermo-Mechanical Stress

ASJC Scopus subject areas

  • Fuel Technology
  • Automotive Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Transient thermo-mechanical stress analysis of hot surface probe using sequentially coupled CFD-FEA approach'. Together they form a unique fingerprint.

Cite this