TY - JOUR
T1 - Traveling waves in the human visual cortex
T2 - An MEG-EEG model-based approach
AU - Grabot, Laetitia
AU - Merholz, Garance
AU - Winawer, Jonathan
AU - Heeger, David J.
AU - Dugué, Laura
N1 - Publisher Copyright:
© 2025 Grabot et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2025/4
Y1 - 2025/4
N2 - Brain oscillations might be traveling waves propagating in cortex. Studying their propagation within single cortical areas has mostly been restricted to invasive measurements. Their investigation in healthy humans, however, requires non-invasive recordings, such as MEG or EEG. Identifying traveling waves with these techniques is challenging because source summation, volume conduction, and low signal-to-noise ratios make it difficult to localize cortical activity from sensor responses. The difficulty is compounded by the lack of a known ground truth in traveling wave experiments. Rather than source-localizing cortical responses from sensor activity, we developed a two-part model-based neuroimaging approach: (1) The putative neural sources of a propagating oscillation were modeled within primary visual cortex (V1) via retinotopic mapping from functional MRI recordings (encoding model); and (2) the modeled sources were projected onto MEG and EEG sensors to predict the resulting signal using a biophysical head model. We tested our model by comparing its predictions against the MEG-EEG signal obtained when participants viewed visual stimuli designed to elicit either fovea-to-periphery or periphery-to-fovea traveling waves or standing waves in V1, in which ground truth cortical waves could be reasonably assumed. Correlations on within-sensor phase and amplitude relations between predicted and measured data revealed good model performance. Crucially, the model predicted sensor data more accurately when the input to the model was a traveling wave going in the stimulus direction compared to when the input was a standing wave, or a traveling wave in a different direction. Furthermore, model accuracy peaked at the spatial and temporal frequency parameters of the visual stimulation. Together, our model successfully recovers traveling wave properties in cortex when they are induced by traveling waves in stimuli. This provides a sound basis for using MEG-EEG to study endogenous traveling waves in cortex and test hypotheses related with their role in cognition.
AB - Brain oscillations might be traveling waves propagating in cortex. Studying their propagation within single cortical areas has mostly been restricted to invasive measurements. Their investigation in healthy humans, however, requires non-invasive recordings, such as MEG or EEG. Identifying traveling waves with these techniques is challenging because source summation, volume conduction, and low signal-to-noise ratios make it difficult to localize cortical activity from sensor responses. The difficulty is compounded by the lack of a known ground truth in traveling wave experiments. Rather than source-localizing cortical responses from sensor activity, we developed a two-part model-based neuroimaging approach: (1) The putative neural sources of a propagating oscillation were modeled within primary visual cortex (V1) via retinotopic mapping from functional MRI recordings (encoding model); and (2) the modeled sources were projected onto MEG and EEG sensors to predict the resulting signal using a biophysical head model. We tested our model by comparing its predictions against the MEG-EEG signal obtained when participants viewed visual stimuli designed to elicit either fovea-to-periphery or periphery-to-fovea traveling waves or standing waves in V1, in which ground truth cortical waves could be reasonably assumed. Correlations on within-sensor phase and amplitude relations between predicted and measured data revealed good model performance. Crucially, the model predicted sensor data more accurately when the input to the model was a traveling wave going in the stimulus direction compared to when the input was a standing wave, or a traveling wave in a different direction. Furthermore, model accuracy peaked at the spatial and temporal frequency parameters of the visual stimulation. Together, our model successfully recovers traveling wave properties in cortex when they are induced by traveling waves in stimuli. This provides a sound basis for using MEG-EEG to study endogenous traveling waves in cortex and test hypotheses related with their role in cognition.
UR - http://www.scopus.com/inward/record.url?scp=105002803504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105002803504&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1013007
DO - 10.1371/journal.pcbi.1013007
M3 - Article
C2 - 40245091
AN - SCOPUS:105002803504
SN - 1553-734X
VL - 21
JO - PLoS computational biology
JF - PLoS computational biology
IS - 4 April
M1 - e1013007
ER -