TREAD: Privacy Preserving Incentivized Connected Vehicle Mobility Data Storage on InterPlanetary-File-System-Enabled Blockchain

Junaid Ahmed Khan, Kavyashree Umesh Bangalore, Abdullah Kurkcu, Kaan Ozbay

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Trajectory data from connected vehicles (CVs) and other micromobility sources such as e-scooters, bikes, and pedestrians is important for researchers, policy makers, and other stakeholders for leveraging the location, speed, and heading, along with other mobility data, to improve safety and bolster technology development toward innovative location-based applications for citizens. Such raw data needs to be stored and accessed from a non-proprietary database while the obfuscation and encryption techniques on current cloud-based proprietary solutions incur data losses that are deemed inefficient for accurate usage, particularly in time-sensitive real-time operations. In this paper, we target the problem of scalably storing and retrieving potentially sensitive data generated by vehicles and propose TREAD, a blockchain-based system comprising smart contracts to store this mobility data on a distributed ledger such that multiple peers can access and utilize it in different location-based applications while not revealing users’ sensitive personal information. It is, however, challenging to scalably store large amounts of constantly generated trajectories, and to achieve scalability we leverage InterPlanetary File System (IPFS), a scalable distributed peer-to-peer data storage system. To avoid users injecting malicious/fake trajectories into the ledger, we develop efficient consensus algorithms for the stakeholders to validate the storage and retrieval process in a distributed manner. We implemented TREAD on the open-source Hyperledger Fabric blockchain platform using trajectory data generated for 700 vehicles in a simulation environment well calibrated with vehicle trajectories from a real-world test-bed in New York City. Results show that TREAD scalably stores trajectory data with lower delay and overhead.

Original languageEnglish (US)
Title of host publicationTransportation Research Record
PublisherSAGE Publications Ltd
Pages680-691
Number of pages12
Volume2676
Edition2
DOIs
StatePublished - Feb 2022

Keywords

  • And electric vehicles)
  • Automated
  • Data analytics
  • Data and data science
  • Data and technology services related to CAEV (connected
  • Including big data
  • Information systems and technology

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'TREAD: Privacy Preserving Incentivized Connected Vehicle Mobility Data Storage on InterPlanetary-File-System-Enabled Blockchain'. Together they form a unique fingerprint.

Cite this