TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection

Hazem Lashen, Lilas Alrahis, Johann Knechtel, Ozgur Sinanoglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose TrojanSAINT, a graph neural network (GNN)-based hardware Trojan (HT) detection scheme working at the gate level. Unlike prior GNN-based art, TrojanSAINT enables both pre-/post-silicon HT detection. TrojanSAINT leverages a sampling-based GNN framework to detect and also localize HTs. For practical validation, TrojanSAINT achieves on average (oa) 78% true positive rate (TPR) and 85% true negative rate (TNR), respectively, on various TrustHub HT benchmarks. For best-case validation, TrojanSAINT even achieves 98% TPR and 96% TNR oa. TrojanSAINT outperforms related prior works and baseline classifiers. We release our source codes and result artifacts.

Original languageEnglish (US)
Title of host publicationISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665451093
DOIs
StatePublished - 2023
Event56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 - Monterey, United States
Duration: May 21 2023May 25 2023

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2023-May
ISSN (Print)0271-4310

Conference

Conference56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
Country/TerritoryUnited States
CityMonterey
Period5/21/235/25/23

Keywords

  • GNNs
  • Hardware Security
  • Trojan Detection

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection'. Together they form a unique fingerprint.

Cite this