@inproceedings{208785a00fb14baca9a2da805f772e77,
title = "TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection",
abstract = "We propose TrojanSAINT, a graph neural network (GNN)-based hardware Trojan (HT) detection scheme working at the gate level. Unlike prior GNN-based art, TrojanSAINT enables both pre-/post-silicon HT detection. TrojanSAINT leverages a sampling-based GNN framework to detect and also localize HTs. For practical validation, TrojanSAINT achieves on average (oa) 78% true positive rate (TPR) and 85% true negative rate (TNR), respectively, on various TrustHub HT benchmarks. For best-case validation, TrojanSAINT even achieves 98% TPR and 96% TNR oa. TrojanSAINT outperforms related prior works and baseline classifiers. We release our source codes and result artifacts.",
keywords = "GNNs, Hardware Security, Trojan Detection",
author = "Hazem Lashen and Lilas Alrahis and Johann Knechtel and Ozgur Sinanoglu",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 ; Conference date: 21-05-2023 Through 25-05-2023",
year = "2023",
doi = "10.1109/ISCAS46773.2023.10181403",
language = "English (US)",
series = "Proceedings - IEEE International Symposium on Circuits and Systems",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "ISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings",
}