TY - JOUR
T1 - Two interacting galaxies hiding as one, revealed by MaNGA
AU - Ciraulo, Barbara Mazzilli
AU - Melchior, Anne Laure
AU - Maschmann, Daniel
AU - Katkov, Ivan Yu
AU - Halle, Anaëlle
AU - Combes, Françoise
AU - Gelfand, Joseph D.
AU - Al Yazeedi, Aisha
N1 - Funding Information:
Acknowledgements. We are most grateful to the IRAM-30 m team who supported us for these observations. IK acknowledges the support from the Russian Scientific Foundation grant 19-12-00281 and the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”. We thank the anonymous referee for constructive comments. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Legacy Surveys consist of three individual and complementary projects: the Dark Energy Camera Legacy Survey (DECaLS; Proposal ID #2014B-0404; PIs: David Schlegel and Arjun Dey), the Beijing-Arizona Sky Survey (BASS; NOAO Prop. ID #2015A-0801; PIs: Zhou Xu and Xiaohui Fan), and the Mayall z-band Legacy Survey (MzLS; Prop. ID #2016A-0453; PI: Arjun Dey). DECaLS, BASS and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo Inter-American Observatory, NSF’s NOIR-Lab; the Bok telescope, Steward Observatory, University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOIRLab. The Legacy Surveys project is honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency.
Publisher Copyright:
© 2021 B. Mazzilli Ciraulo et al.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Given their prominent role in galaxy evolution, it is of paramount importance to unveil galaxy interactions and merger events and to investigate the underlying mechanisms. The use of high-resolution data makes it easier to identify merging systems, but it can still be challenging when the morphology does not show any clear galaxy pair or gas bridge. Characterising the origin of puzzling kinematic features can help reveal complicated systems. Here, we present a merging galaxy, MaNGA 1-114955, in which we highlighted the superimposition of two distinct rotating discs along the line of sight. These counter-rotating objects both lie on the star-forming main sequence but display perturbed stellar velocity dispersions. The main galaxy presents off-centred star formation as well as off-centred high-metallicity regions, supporting the scenario of recent starbursts, while the secondary galaxy hosts a central starburst that coincides with an extended radio emission, in excess with respect to star formation expectations. Stellar mass as well as dynamical mass estimates agree towards a mass ratio within the visible radius of 9:1 for these interacting galaxies. We suggest that we are observing a pre-coalescence stage of a merger. The primary galaxy accreted gas through a past first pericentre passage about 1 Gyr ago and more recently from the secondary gas-rich galaxy, which exhibits an underlying active galactic nucleus. Our results demonstrate how a galaxy can hide another one and the relevance of a multi-component approach for studying ambiguous systems. We anticipate that our method will be efficient at unveiling the mechanisms taking place in a sub-sample of galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, all of which exhibit kinematic features of a puzzling origin in their gas emission lines.
AB - Given their prominent role in galaxy evolution, it is of paramount importance to unveil galaxy interactions and merger events and to investigate the underlying mechanisms. The use of high-resolution data makes it easier to identify merging systems, but it can still be challenging when the morphology does not show any clear galaxy pair or gas bridge. Characterising the origin of puzzling kinematic features can help reveal complicated systems. Here, we present a merging galaxy, MaNGA 1-114955, in which we highlighted the superimposition of two distinct rotating discs along the line of sight. These counter-rotating objects both lie on the star-forming main sequence but display perturbed stellar velocity dispersions. The main galaxy presents off-centred star formation as well as off-centred high-metallicity regions, supporting the scenario of recent starbursts, while the secondary galaxy hosts a central starburst that coincides with an extended radio emission, in excess with respect to star formation expectations. Stellar mass as well as dynamical mass estimates agree towards a mass ratio within the visible radius of 9:1 for these interacting galaxies. We suggest that we are observing a pre-coalescence stage of a merger. The primary galaxy accreted gas through a past first pericentre passage about 1 Gyr ago and more recently from the secondary gas-rich galaxy, which exhibits an underlying active galactic nucleus. Our results demonstrate how a galaxy can hide another one and the relevance of a multi-component approach for studying ambiguous systems. We anticipate that our method will be efficient at unveiling the mechanisms taking place in a sub-sample of galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, all of which exhibit kinematic features of a puzzling origin in their gas emission lines.
KW - Galaxies: interactions
KW - Galaxy: evolution
KW - Galaxy: kinematics and dynamics
KW - Methods: data analysis
KW - Techniques: spectroscopic
UR - http://www.scopus.com/inward/record.url?scp=85114806599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114806599&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202141319
DO - 10.1051/0004-6361/202141319
M3 - Article
AN - SCOPUS:85114806599
SN - 0004-6361
VL - 653
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A47
ER -