TY - JOUR
T1 - Two mechanisms for fluorescence intermittency of single violamine R molecules
AU - Riley, Erin A.
AU - Bingham, Chris
AU - Bott, Eric D.
AU - Kahr, Bart
AU - Reid, Philip J.
PY - 2011/2/7
Y1 - 2011/2/7
N2 - The environment and temperature-dependent photoluminescence (PL) intermittency or "blinking" demonstrated by single violamine R (VR) molecules is investigated in two environments: poly(vinyl alcohol) (PVOH) and single crystals of potassium acid phthalate (KAP). In addition, temperatures ranging from 23 °C to 85 °C are studied, spanning the glass-transition temperature of PVOH (Tg = 72 °C). The PL intermittency exhibited by VR is analyzed using probability histograms of emissive and non-emissive periods. In both PVOH and KAP, these histograms are best fit by a power law, consistent with the kinetics for dark state production and decay being dispersed as observed in previous studies. However, these systems have different temperature dependences, signifying two different blinking mechanisms for VR. In PVOH, the on- and off-event probability histograms do not vary with temperature, consistent with electron transfer via tunneling between VR and the polymer. In KAP the same histograms are temperature dependent, and show that blinking slows down at higher temperatures. This result is inconsistent with an electron-transfer process being responsible for blinking. Instead, a non-adiabatic proton-transfer between VR and KAP is presented as a model consistent with this temperature dependence. In summary, the results presented here demonstrate that for a given luminophore, the photochemical processes responsible for PL intermittency can change with environment.
AB - The environment and temperature-dependent photoluminescence (PL) intermittency or "blinking" demonstrated by single violamine R (VR) molecules is investigated in two environments: poly(vinyl alcohol) (PVOH) and single crystals of potassium acid phthalate (KAP). In addition, temperatures ranging from 23 °C to 85 °C are studied, spanning the glass-transition temperature of PVOH (Tg = 72 °C). The PL intermittency exhibited by VR is analyzed using probability histograms of emissive and non-emissive periods. In both PVOH and KAP, these histograms are best fit by a power law, consistent with the kinetics for dark state production and decay being dispersed as observed in previous studies. However, these systems have different temperature dependences, signifying two different blinking mechanisms for VR. In PVOH, the on- and off-event probability histograms do not vary with temperature, consistent with electron transfer via tunneling between VR and the polymer. In KAP the same histograms are temperature dependent, and show that blinking slows down at higher temperatures. This result is inconsistent with an electron-transfer process being responsible for blinking. Instead, a non-adiabatic proton-transfer between VR and KAP is presented as a model consistent with this temperature dependence. In summary, the results presented here demonstrate that for a given luminophore, the photochemical processes responsible for PL intermittency can change with environment.
UR - http://www.scopus.com/inward/record.url?scp=78751689076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78751689076&partnerID=8YFLogxK
U2 - 10.1039/c0cp01716g
DO - 10.1039/c0cp01716g
M3 - Article
C2 - 21218221
AN - SCOPUS:78751689076
SN - 1463-9076
VL - 13
SP - 1879
EP - 1887
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 5
ER -