Ultralocal quantum field theory in terms of currents - I. The free theory

Charles M. Newman

Research output: Contribution to journalArticlepeer-review


The paper considers the possibility of constructing ultralocal theories, whose Hamiltonians contain no gradient terms and are therefore diagonal in position space, entirely in terms of currents with an equal time current algebra replacing the canonical commutation relations. It is shown that the free current theory can be defined in terms of a certain representation of the current algebra related to the group, S L(2, R). This representation is then constructed by using certain results of Araki and in the process a new infinitely divisible state on the universal covering group of SL(2, R) is displayed. An ultralocal free theory can also be constructed for the canonical fields, and its relation to the free current theory is shown to involve a certain renormalization procedure reminiscent of the thermodynamic limit.

Original languageEnglish (US)
Pages (from-to)169-204
Number of pages36
JournalCommunications In Mathematical Physics
Issue number3
StatePublished - Sep 1972

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Ultralocal quantum field theory in terms of currents - I. The free theory'. Together they form a unique fingerprint.

Cite this