TY - JOUR
T1 - Ultrasound activates the TM ELAM-1/IL-1/NF-κB response
T2 - A potential mechanism for intraocular pressure reduction after phacoemulsification
AU - Wang, Nan
AU - Chintala, Shravan K.
AU - Fini, M. Elizabeth
AU - Schuman, Joel S.
PY - 2003/5/1
Y1 - 2003/5/1
N2 - PURPOSE. Elevated intraocular pressure (IOP), the major causal risk factor for glaucoma, often decreases after cataract removal by phacoemulsification ultrasound. In this study, the hypothesis that ultrasound energy propagated through a fluid medium induces a stress response with the potential to lower IOP was investigated. METHODS. Normal and glaucomatous trabecular meshwork (TM) cell culture lines were initiated from tissue isolated from human cadaveric eyes or trabeculectomy specimens. Cultured cells were treated for 60 seconds with a phacoemulsification ultrasound probe set to a power of 70%. Activation of the TM cell-specific stress response was assayed by enzyme-linked immunosorbent assay (ELISA) and immunolocalization. RESULTS. Normal TM cell cultures did not release detectable levels of the stress response protein, IL-1α, into their culture medium. In contrast, IL-1α was easily detected after treatment with ultrasound energy. Consistent with earlier findings, glaucomatous TM cells produced IL-1α constitutively, and the level of expression was increased after treatment with phacoemulsification ultrasound. As was previously demonstrated, the stress-regulated transcription factor NF-κB was present in the cytoplasm of normal cells, but in the nucleus of glaucomatous cells. After treatment with ultrasound energy, NF-κB translocated to the nucleus in the normal cells. Endothelial leukocyte-adhesion molecule (ELAM)-1 was not detected in normal TM cells, but was constitutively present on glaucomatous TM cells, consistent with findings in previous work. ELAM-1 expression was induced in normal cells by ultrasound treatment. CONCLUSIONS. A potentially IOP-lowering stress response is induced in TM cells by ultrasound. The findings suggest that this response may be induced clinically during cataract removal by phacoemulsification, and may be one mechanism responsible for the reduction in IOP that often follows this procedure.
AB - PURPOSE. Elevated intraocular pressure (IOP), the major causal risk factor for glaucoma, often decreases after cataract removal by phacoemulsification ultrasound. In this study, the hypothesis that ultrasound energy propagated through a fluid medium induces a stress response with the potential to lower IOP was investigated. METHODS. Normal and glaucomatous trabecular meshwork (TM) cell culture lines were initiated from tissue isolated from human cadaveric eyes or trabeculectomy specimens. Cultured cells were treated for 60 seconds with a phacoemulsification ultrasound probe set to a power of 70%. Activation of the TM cell-specific stress response was assayed by enzyme-linked immunosorbent assay (ELISA) and immunolocalization. RESULTS. Normal TM cell cultures did not release detectable levels of the stress response protein, IL-1α, into their culture medium. In contrast, IL-1α was easily detected after treatment with ultrasound energy. Consistent with earlier findings, glaucomatous TM cells produced IL-1α constitutively, and the level of expression was increased after treatment with phacoemulsification ultrasound. As was previously demonstrated, the stress-regulated transcription factor NF-κB was present in the cytoplasm of normal cells, but in the nucleus of glaucomatous cells. After treatment with ultrasound energy, NF-κB translocated to the nucleus in the normal cells. Endothelial leukocyte-adhesion molecule (ELAM)-1 was not detected in normal TM cells, but was constitutively present on glaucomatous TM cells, consistent with findings in previous work. ELAM-1 expression was induced in normal cells by ultrasound treatment. CONCLUSIONS. A potentially IOP-lowering stress response is induced in TM cells by ultrasound. The findings suggest that this response may be induced clinically during cataract removal by phacoemulsification, and may be one mechanism responsible for the reduction in IOP that often follows this procedure.
UR - http://www.scopus.com/inward/record.url?scp=0037408528&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037408528&partnerID=8YFLogxK
U2 - 10.1167/iovs.02-0631
DO - 10.1167/iovs.02-0631
M3 - Article
C2 - 12714632
AN - SCOPUS:0037408528
SN - 0146-0404
VL - 44
SP - 1977
EP - 1981
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 5
ER -