Unbiased and efficient log-likelihood estimation with inverse binomial sampling

Bas van Opheusden, Luigi Acerbi, Wei Ji Ma

Research output: Contribution to journalArticlepeer-review

Abstract

The fate of scientific hypotheses often relies on the ability of a computational model to explain the data, quantified in modern statistical approaches by the likelihood function. The log-likelihood is the key element for parameter estimation and model evaluation. However, the log-likelihood of complex models in fields such as computational biology and neuroscience is often intractable to compute analytically or numerically. In those cases, researchers can often only estimate the log-likelihood by comparing observed data with synthetic observations generated by model simulations. Standard techniques to approximate the likelihood via simulation either use summary statistics of the data or are at risk of producing substantial biases in the estimate. Here, we explore another method, inverse binomial sampling (IBS), which can estimate the log-likelihood of an entire data set efficiently and without bias. For each observation, IBS draws samples from the simulator model until one matches the observation. The log-likelihood estimate is then a function of the number of samples drawn. The variance of this estimator is uniformly bounded, achieves the minimum variance for an unbiased estimator, and we can compute calibrated estimates of the variance. We provide theoretical arguments in favor of IBS and an empirical assessment of the method for maximum-likelihood estimation with simulation-based models. As case studies, we take three model-fitting problems of increasing complexity from computational and cognitive neuroscience. In all problems, IBS generally produces lower error in the estimated parameters and maximum log-likelihood values than alternative sampling methods with the same average number of samples. Our results demonstrate the potential of IBS as a practical, robust, and easy to implement method for log-likelihood evaluation when exact techniques are not available.

Original languageEnglish (US)
Article numbere1008483
JournalPLoS computational biology
Volume16
Issue number12 December
DOIs
StatePublished - Dec 23 2020

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Unbiased and efficient log-likelihood estimation with inverse binomial sampling'. Together they form a unique fingerprint.

Cite this