Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty

Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian Weller, Alice Xiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model's behavior to stakeholders. However, understanding a model's specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.

Original languageEnglish (US)
Title of host publicationAIES 2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society
PublisherAssociation for Computing Machinery, Inc
Pages401-413
Number of pages13
ISBN (Electronic)9781450384735
DOIs
StatePublished - Jul 21 2021
Event4th AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, AIES 2021 - Virtual, Online, United States
Duration: May 19 2021May 21 2021

Publication series

NameAIES 2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society

Conference

Conference4th AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, AIES 2021
Country/TerritoryUnited States
CityVirtual, Online
Period5/19/215/21/21

Keywords

  • machine learning
  • transparency
  • uncertainty
  • visualization

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty'. Together they form a unique fingerprint.

Cite this