Uncertainty-aware Fine-tuning of Segmentation Foundation Models

Kangning Liu, Brian Price, Jason Kuen, Yifei Fan, Zijun Wei, Luis Figueroa, Krzysztof J. Geras, Carlos Fernandez-Granda

Research output: Contribution to journalConference articlepeer-review

Abstract

The Segment Anything Model (SAM) is a large-scale foundation model that has revolutionized segmentation methodology. Despite its impressive generalization ability, the segmentation accuracy of SAM on images with intricate structures is often unsatisfactory. Recent works have proposed lightweight fine-tuning using high-quality annotated data to improve accuracy on such images. However, here we provide extensive empirical evidence that this strategy leads to forgetting how to “segment anything”: these models lose the original generalization abilities of SAM in the sense that they perform worse for segmentation tasks not represented in the annotated fine-tuning set. To improve performance without forgetting, we introduce a novel framework that combines high-quality annotated data with a large unlabeled dataset. The framework relies on two methodological innovations. First, we quantify the uncertainty in the SAM pseudo labels associated with the unlabeled data and leverage it to perform uncertainty-aware fine-tuning. Second, we encode the type of segmentation task associated with each training example using a task prompt to reduce ambiguity. We evaluated the proposed Segmentation with Uncertainty Model (SUM) on a diverse test set consisting of 14 public benchmarks, where it achieves state-of-the-art results. Notably, our method consistently surpasses SAM by 3-6 points in mean IoU and 4-7 in mean boundary IoU across point-prompt interactive segmentation rounds. Code is available at https://github.com/Kangningthu/SUM.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Uncertainty-aware Fine-tuning of Segmentation Foundation Models'. Together they form a unique fingerprint.

Cite this