Understanding 3D Object Articulation in Internet Videos

Shengyi Qian, Linyi Jin, Chris Rockwell, Siyi Chen, David F. Fouhey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose to investigate detecting and characterizing the 3D planar articulation of objects from ordinary RGB videos. While seemingly easy for humans, this problem poses many challenges for computers. Our approach is based on a top-down detection system that finds planes that can be articulated. This approach is followed by optimizing for a 3D plane that explains a sequence of detected articulations. We show that this system can be trained on a combination of videos and 3D scan datasets. When tested on a dataset of challenging Internet videos and the Charades dataset, our approach obtains strong performance.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages1589-1599
Number of pages11
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Keywords

  • 3D from single images
  • Scene analysis and understanding

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Understanding 3D Object Articulation in Internet Videos'. Together they form a unique fingerprint.

Cite this