UNDERSTANDING DIMENSIONAL COLLAPSE IN CONTRASTIVE SELF-SUPERVISED LEARNING

Li Jing, Pascal Vincent, Yann LeCun, Yuandong Tian

Research output: Contribution to conferencePaperpeer-review

Abstract

Self-supervised visual representation learning aims to learn useful representations without relying on human annotations. Joint embedding approach bases on maximizing the agreement between embedding vectors from different views of the same image. Various methods have been proposed to solve the collapsing problem where all embedding vectors collapse to a trivial constant solution. Among these methods, contrastive learning prevents collapse via negative sample pairs. It has been shown that non-contrastive methods suffer from a lesser collapse problem of a different nature: dimensional collapse, whereby the embedding vectors end up spanning a lower-dimensional subspace instead of the entire available embedding space. Here, we show that dimensional collapse also happens in contrastive learning. In this paper, we shed light on the dynamics at play in contrastive learning that leads to dimensional collapse. Inspired by our theory, we propose a novel contrastive learning method, called DirectCLR, which directly optimizes the representation space without relying on a trainable projector. Experiments show that DirectCLR outperforms SimCLR with a trainable linear projector on ImageNet.

Original languageEnglish (US)
StatePublished - 2022
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period4/25/224/29/22

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'UNDERSTANDING DIMENSIONAL COLLAPSE IN CONTRASTIVE SELF-SUPERVISED LEARNING'. Together they form a unique fingerprint.

Cite this