Understanding Energy Efficiency and Interference Tolerance in Millimeter Wave Receivers

Panagiotis Skrimponis, Seongjoon Kang, Abbas Khalili, Wonho Lee, Navid Hosseinzadeh, Marco Mezzavilla, Elza Erkip, Mark J.W. Rodwell, James F. Buckwalter, Sundeep Rangan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Power consumption is a key challenge in millimeter wave (mmWave) receiver front-ends, due to the need to support high dimensional antenna arrays at wide bandwidths. Recently, there has been considerable work in developing low-power front-ends, often based on low-resolution ADCs and low-power mixers. A critical but less studied consequence of such designs is the relatively low-dynamic range which in turn exposes the receiver to adjacent carrier interference and blockers. This paper provides a general mathematical framework for analyzing the performance of mmWave front-ends in the presence of out-of-band interference. The goal is to elucidate the fundamental trade-off of power consumption, interference tolerance and in-band performance. The analysis is combined with detailed network simulations in cellular systems with multiple carriers, as well as detailed circuit simulations of key components at 140 GHz. The analysis reveals critical bottlenecks for low-power interference robustness and suggests designs enhancements for use in practical systems.

Original languageEnglish (US)
Title of host publication55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages645-651
Number of pages7
ISBN (Electronic)9781665458283
DOIs
StatePublished - 2021
Event55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021 - Virtual, Pacific Grove, United States
Duration: Oct 31 2021Nov 3 2021

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2021-October
ISSN (Print)1058-6393

Conference

Conference55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
Country/TerritoryUnited States
CityVirtual, Pacific Grove
Period10/31/2111/3/21

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Understanding Energy Efficiency and Interference Tolerance in Millimeter Wave Receivers'. Together they form a unique fingerprint.

Cite this