Abstract
We prove the uniqueness of weak solutions of the Navier-Stokes equations in C([0, T); LN(Ω)), where Ω is the whole space ℝN, a regular domain of ℝN or the torus TN , with N ≥ 3. The proof lies on three elementary ingredients: the introduction of a dual problem, a decomposition of the solutions and a "boostrap" argument.
Translated title of the contribution | Uniqueness of weak solutions of the navier-stokes equations in ln(Ω) |
---|---|
Original language | French |
Pages (from-to) | 491-496 |
Number of pages | 6 |
Journal | Comptes Rendus de l'Academie des Sciences - Series I: Mathematics |
Volume | 327 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1998 |
ASJC Scopus subject areas
- Mathematics(all)