TY - JOUR
T1 - Uniqueness of weak solutions of the navier-stokes equations in ln(Ω)
AU - Lions, Pierre Louis
AU - Masmoudi, Nader
PY - 1998/9
Y1 - 1998/9
N2 - We prove the uniqueness of weak solutions of the Navier-Stokes equations in C([0, T); LN(Ω)), where Ω is the whole space ℝN, a regular domain of ℝN or the torus TN , with N ≥ 3. The proof lies on three elementary ingredients: the introduction of a dual problem, a decomposition of the solutions and a "boostrap" argument.
AB - We prove the uniqueness of weak solutions of the Navier-Stokes equations in C([0, T); LN(Ω)), where Ω is the whole space ℝN, a regular domain of ℝN or the torus TN , with N ≥ 3. The proof lies on three elementary ingredients: the introduction of a dual problem, a decomposition of the solutions and a "boostrap" argument.
UR - http://www.scopus.com/inward/record.url?scp=0032162238&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032162238&partnerID=8YFLogxK
U2 - 10.1016/S0764-4442(99)80028-7
DO - 10.1016/S0764-4442(99)80028-7
M3 - Article
AN - SCOPUS:0032162238
SN - 0764-4442
VL - 327
SP - 491
EP - 496
JO - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
JF - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
IS - 5
ER -