Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

Elena Beretta, Maarten V. De Hoop, Elisa Francini, Sergio Vessella, Jian Zhai

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

Original languageEnglish (US)
Article number035013
JournalInverse Problems
Volume33
Issue number3
DOIs
StatePublished - Feb 15 2017

Keywords

  • Lipschitz stability
  • inverse boundary value problem
  • time-harmonic elastic waves
  • uniqueness

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Signal Processing
  • Mathematical Physics
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves'. Together they form a unique fingerprint.

Cite this